Advertisement

Current Microbiology

, Volume 69, Issue 5, pp 716–724 | Cite as

Single Consumption of Bryndza Cheese Temporarily Affects Oral Microbiota and Salivary Markers of Oxidative Stress

  • Natália KamodyováEmail author
  • Gabriel Minárik
  • Július Hodosy
  • Peter Celec
Article

Abstract

Several oral diseases are associated with changes in oral microbiota and higher oxidative stress. Enterococcus faecalis has been hypothesized to directly contribute to the oxidative stress in oral cavity. The aim of this study was to examine the effect of single consumption of unpasteurized Bryndza cheese containing enterococci on changes of microbiota and oxidative status in saliva. Fourteen healthy volunteers aged 23–30 years were asked to eat 100 g of Bryndza cheese. Saliva samples were collected before and 1, 10, 100 min, and 24 h after Bryndza cheese consumption. Species-specific PCR and terminal restriction fragment length polymorphism (T-RFLP) analysis were used to characterize oral microbiota. Markers of oxidative stress and antioxidant status were measured in saliva. PCR identified E. faecium in 36 % of probands saliva up to 1 day after consumption of enterococci containing Bryndza cheese. E. faecalis was detected in 57 % of probands saliva up to 10 min and in one proband up to 100 min after Bryndza cheese consumption. T-RFLP analysis confirmed short-term changes in composition of oral microbiota after Bryndza cheese ingestion. Nevertheless, the microbiota was completely restored after 24 h. One minute after ingestion of Bryndza cheese, salivary advanced oxidation protein products were significantly increased (by 74.6 %, P < 0.001), and total antioxidant capacity was decreased (by 22.0 %, P < 0.05). This study shows that single consumption of enterococci containing Bryndza cheese can temporally affect the composition of oral microbiota and oxidative stress in saliva. Further studies should identify the impact of these changes to the pathogenesis of oral diseases.

Keywords

Oral Cavity Saliva Sample Terminal Restriction Fragment Length Polymorphism Oxidative Stress Marker Oral Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The study was supported by Slovak Research and Development Agency (Grant VMSP-II-0027-09) and Ministry of Education, Research and Sport of the Slovak Republic (Grant 1/0674/12).

Conflict of interest

There are no conflicts of interest regarding the publication of this article.

References

  1. 1.
    Jurkovic D, Krizkova L, Dusinsky R, Belicova A, Sojka M, Krajcovic J, Ebringer L (2006) Identification and characterization of enterococci from bryndza cheese. Lett Appl Microbiol 42(6):553–559. doi: 10.1111/j.1472-765X.2006.01918.x PubMedGoogle Scholar
  2. 2.
    Razavi A, Gmur R, Imfeld T, Zehnder M (2007) Recovery of Enterococcus faecalis from cheese in the oral cavity of healthy subjects. Oral Microbiol Immunol 22(4):248–251. doi: 10.1111/j.1399-302X.2006.00349.x PubMedCrossRefGoogle Scholar
  3. 3.
    Al-Ahmad A, Maier J, Follo M, Spitzmuller B, Wittmer A, Hellwig E, Hubner J, Jonas D (2010) Food-borne enterococci integrate into oral biofilm: an in vivo study. J Endod 36(11):1812–1819. doi: 10.1016/j.joen.2010.08.011 PubMedCrossRefGoogle Scholar
  4. 4.
    Rams TE, Feik D, Young V, Hammond BF, Slots J (1992) Enterococci in human periodontitis. Oral Microbiol Immunol 7(4):249–252. doi: 10.1111/j.1399-302X.1992.tb00034.x PubMedCrossRefGoogle Scholar
  5. 5.
    Huycke MM, Joyce W, Wack MF (1996) Augmented production of extracellular superoxide by blood isolates of Enterococcus faecalis. J Infect Dis 173(3):743–746PubMedCrossRefGoogle Scholar
  6. 6.
    Moy TI, Mylonakis E, Calderwood SB, Ausubel FM (2004) Cytotoxicity of Hydrogen Peroxide Produced by Enterococcus faecium. Infect Immun 72(8):4512–4520. doi: 10.1128/IAI.72.8.4512-4520.2004 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Huycke MM, Moore D, Joyce W, Wise P, Shepard L, Kotake Y, Gilmore MS (2001) Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 42(3):729–740PubMedCrossRefGoogle Scholar
  8. 8.
    Huycke MM, Moore DR (2002) In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 33(6):818–826PubMedCrossRefGoogle Scholar
  9. 9.
    Ozturk LK, Furuncuoglu H, Atala MH, Ulukoylu O, Akyuz S, Yarat A (2008) Association between dental and oral health in young adults and salivary glutathione, lipid peroxidation and sialic acid levels and carbonic anhydrase activity. Braz J Med Biol Res 41(11):956–959PubMedGoogle Scholar
  10. 10.
    Akalin FA, Baltacioglu E, Alver A, Karabulut E (2007) Lipid peroxidation levels and total oxidant status in serum, saliva and gingival crevicular fluid in patients with chronic periodontitis. J Clin Periodontol 34(7):558–565. doi: 10.1111/j.1600-051X.2007.01091.x PubMedCrossRefGoogle Scholar
  11. 11.
    Socransky SS, Haffajee AD (2005) Periodontal microbial ecology. Periodontology 2000 38:135–187. doi: 10.1111/j.1600-0757.2005.00107.x PubMedCrossRefGoogle Scholar
  12. 12.
    van Houte J (1994) Role of micro-organisms in caries etiology. J Dent Res 73(3):672–681PubMedGoogle Scholar
  13. 13.
    Laine ML, Crielaard W, Loos BG (2012) Genetic susceptibility to periodontitis. Periodontology 2000 58(1):37–68. doi: 10.1111/j.1600-0757.2011.00415.x PubMedCrossRefGoogle Scholar
  14. 14.
    Tsai CC, Chen HS, Chen SL, Ho YP, Ho KY, Wu YM, Hung CC (2005) Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res 40(5):378–384. doi: 10.1111/j.1600-0765.2005.00818.x PubMedCrossRefGoogle Scholar
  15. 15.
    Greabu M, Battino M, Mohora M, Totan A, Didilescu A, Spinu T, Totan C, Miricescu D, Radulescu R (2009) Saliva-a diagnostic window to the body, both in health and in disease. J Med Life 2(2):124–132PubMedPubMedCentralGoogle Scholar
  16. 16.
    Celec P, Hodosy J, Celecova V, Vodrazka J, Cervenka T, Halcak L, Bozek P, Kopani M, Kudela M (2005) Salivary thiobarbituric acid reacting substances and malondialdehyde-their relationship to reported smoking and to parodontal status described by the papillary bleeding index. Dis Markers 21(3):133–137. doi: 10.1155/2005/693437 PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Vlkova B, Celec P (2009) Does Enterococcus faecalis contribute to salivary thiobarbituric acid-reacting substances? In Vivo 23(2):343–345PubMedGoogle Scholar
  18. 18.
    Bollet C, Gevaudan MJ, de Lamballerie X, Zandotti C, de Micco P (1991) A simple method for the isolation of chromosomal DNA from gram positive or acid-fast bacteria. Nucleic Acids Res 19(8):1955PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33(1):24–27PubMedPubMedCentralGoogle Scholar
  20. 20.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  21. 21.
    Behuliak M, Palffy R, Gardlik R, Hodosy J, Halcak L, Celec P (2009) Variability of thiobarbituric acid reacting substances in saliva. Dis Markers 26(2):49–53. doi: 10.3233/DMA-2009-0606 PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49(5):1304–1313PubMedCrossRefGoogle Scholar
  23. 23.
    Munch G, Keis R, Wessels A, Riederer P, Bahner U, Heidland A, Niwa T, Lemke HD, Schinzel R (1997) Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur J Clin Chem Clin Biochem 35(9):669–677PubMedGoogle Scholar
  24. 24.
    Bhatwadekar AD, Ghole VS (2005) Rapid method for the preparation of an AGE-BSA standard calibrator using thermal glycation. J Clin Lab Anal 19(1):11–15. doi: 10.1002/jcla.20048 PubMedCrossRefGoogle Scholar
  25. 25.
    Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37(4):277–285. doi: 10.1016/j.clinbiochem.2003.11.015 PubMedCrossRefGoogle Scholar
  26. 26.
    Franz CM, Holzapfel WH, Stiles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47(1–2):1–24PubMedCrossRefGoogle Scholar
  27. 27.
    Jurkovic D, Krizkova L, Sojka M, Belicova A, Dusinsky R, Krajcovic J, Snauwaert C, Naser S, Vandamme P, Vancanneyt M (2006) Molecular identification and diversity of enterococci isolated from Slovak Bryndza cheese. J Gen Appl Microbiol 52(6):329–337PubMedCrossRefGoogle Scholar
  28. 28.
    Sedgley CM, Lennan SL, Clewell DB (2004) Prevalence, phenotype and genotype of oral enterococci. Oral Microbiol Immunol 19(2):95–101PubMedCrossRefGoogle Scholar
  29. 29.
    Sun J, Song X, Kristiansen BE, Kjaereng A, Willems RJ, Eriksen HM, Sundsfjord A, Sollid JE (2009) Occurrence, population structure, and antimicrobial resistance of enterococci in marginal and apical periodontitis. J Clin Microbiol 47(7):2218–2225. doi: 10.1128/jcm.00388-09 PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Wade WG (2013) The oral microbiome in health and disease. Pharmacol Res 69(1):137–143. doi: 10.1016/j.phrs.2012.11.006 PubMedCrossRefGoogle Scholar
  31. 31.
    Sakamoto M, Takeuchi Y, Umeda M, Ishikawa I, Benno Y (2003) Application of terminal RFLP analysis to characterize oral bacterial flora in saliva of healthy subjects and patients with periodontitis. J Med Microbiol 52(1):79–89. doi: 10.1099/jmm.0.04991-0 PubMedCrossRefGoogle Scholar
  32. 32.
    Al-Ahmad A, Muller N, Wiedmann-Al-Ahmad M, Sava I, Hubner J, Follo M, Schirrmeister J, Hellwig E (2009) Endodontic and salivary isolates of Enterococcus faecalis integrate into biofilm from human salivary bacteria cultivated in vitro. J Endod 35(7):986–991. doi: 10.1016/j.joen.2009.04.013 PubMedCrossRefGoogle Scholar
  33. 33.
    Shyu C, Soule T, Bent SJ, Foster JA, Forney LJ (2007) MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb Ecol 53(4):562–570. doi: 10.1007/s00248-006-9106-0 PubMedCrossRefGoogle Scholar
  34. 34.
    Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259. doi: 10.1186/1471-2180-9-259 PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    von Graevenitz A, Punter-Streit V, Riegel P, Funke G (1998) Coryneform bacteria in throat cultures of healthy individuals. J Clin Microbiol 36(7):2087–2088Google Scholar
  36. 36.
    Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19(7):1141–1152PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Chapple IL (1997) Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 24(5):287–296PubMedCrossRefGoogle Scholar
  38. 38.
    Kayaoglu G, Ørstavik D (2004) Virulence factors of Enterococcus faecalis: relationship to Endodontic disease. Crit Rev Oral Biol Med 15(5):308–320. doi: 10.1177/154411130401500506 PubMedCrossRefGoogle Scholar
  39. 39.
    Sawamoto Y, Sugano N, Tanaka H, Ito K (2005) Detection of periodontopathic bacteria and an oxidative stress marker in saliva from periodontitis patients. Oral Microbiol Immunol 20(4):216–220. doi: 10.1111/j.1399-302X.2005.00215.x PubMedCrossRefGoogle Scholar
  40. 40.
    Kampfer J, Gohring TN, Attin T, Zehnder M (2007) Leakage of food-borne Enterococcus faecalis through temporary fillings in a simulated oral environment. Int Endod J 40(6):471–477. doi: 10.1111/j.1365-2591.2007.01252.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Natália Kamodyová
    • 1
    Email author
  • Gabriel Minárik
    • 1
    • 2
  • Július Hodosy
    • 1
    • 3
    • 4
  • Peter Celec
    • 1
    • 2
    • 3
    • 5
  1. 1.Institute of Molecular BioMedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
  2. 2.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  3. 3.Center for Molecular MedicineSlovak Academy of SciencesBratislavaSlovakia
  4. 4.Institute of Physiology, Faculty of MedicineComenius UniversityBratislavaSlovakia
  5. 5.Institute of Pathological Physiology, Faculty of MedicineComenius UniversityBratislavaSlovakia

Personalised recommendations