Advertisement

Current Microbiology

, Volume 69, Issue 4, pp 541–548 | Cite as

The Effect of Tunicamycin on the Glucose Uptake, Growth, and Cellular Adhesion in the Protozoan Parasite Crithidia fasciculata

  • Robert Rojas
  • Christopher Segovia
  • Annette Nicole Trombert
  • Javier Santander
  • Patricio Manque
Article

Abstract

Crithidia fasciculata represents a very interesting model organism to study biochemical, cellular, and genetic processes unique to members of the family of the Trypanosomatidae. Thus, C. fasciculata parasitizes several species of insects and has been widely used to test new therapeutic strategies against parasitic infections. By using tunicamycin, a potent inhibitor of glycosylation in asparaginyl residues of glycoproteins (N-glycosylation), we demonstrate that N-glycosylation in C. fasciculata cells is involved in modulating glucose uptake, dramatically impacting growth, and cell adhesion. C. fasciculata treated with tunicamycin was severely affected in their ability to replicate and to adhere to polystyrene substrates and losing their ability to aggregate into small and large groups. Moreover, under tunicamycin treatment, the parasites were considerably shorter and rounder and displayed alterations in cytoplasmic vesicles formation. Furthermore, glucose uptake was significantly impaired in a tunicamycin dose-dependent manner; however, no cytotoxic effect was observed. Interestingly, this effect was reversible. Thus, when tunicamycin was removed from the culture media, the parasites recovered its growth rate, cell adhesion properties, and glucose uptake. Collectively, these results suggest that changes in the tunicamycin-dependent glycosylation levels can influence glucose uptake, cell growth, and adhesion in the protozoan parasite C. fasciculata.

Keywords

Glucose Uptake Protozoan Parasite Tunicamycin Multivesicular Body Tunicamycin Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Special thanks to Professor Luis Carlos de Souza Ferreira and Prof. Rita de Cássia Café Ferreira for their great support, helpful tips, learning, friendship, and invaluable scientific discussions received in the CEVAT laboratory, São Paulo University, São Paulo, Brazil.

References

  1. 1.
    Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, Kikuchi M, Hirano H, Yazaki Y (1991) The role of N-glycosylation of GLUT1 for glucose transport activity. J Biol Chem 266:24632–24636PubMedGoogle Scholar
  2. 2.
    Azema L, Claustre S, Alric I, Blonski C, Willson M, Perié J, Baltz T, Tetaud E, Bringaud F, Cottem D, Opperdoes FR, Barrett MP (2004) Interaction of substituted hexose analogues with the Trypanosoma brucei hexose transporter. Biochem Pharmacol 67:459–467PubMedCrossRefGoogle Scholar
  3. 3.
    Cai G, Salonikidis PS, Fei J, Schwarz W, Schulein R, Reutter W, Fan H (2005) The role of N-glycosylation in the stability, trafficking, and GABA uptake of GABA transporter 1. FEBS J 272:1625–1638PubMedCrossRefGoogle Scholar
  4. 4.
    Barrett MP, Tetaud E, Seyfang A, Bringaud F, Baltz T (1995) Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2. Biochem J 312:687–691PubMedCentralPubMedGoogle Scholar
  5. 5.
    Barrett MP, Tetaud E, Seyfang S, Bringaud F, Baltz T (1998) Trypanosome glucose transporters. Mol Biochem Parasitol 91:195–205PubMedCrossRefGoogle Scholar
  6. 6.
    Bonaldo MC, Souto-Padron T, De Souza W, Goldenberg S (1988) Cell–substrate adhesion during Trypanosoma cruzi differentiation. J Cell Biol 106:1349–1358PubMedCrossRefGoogle Scholar
  7. 7.
    Bringaud F, Rivière L, Coustou V (2006) Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149:1–9PubMedCrossRefGoogle Scholar
  8. 8.
    Brooker BE (1971) Flagellar attachment and detachment of Crithidia fasciculata to the gut wall of Anopheles gambiae. Protoplasma 73:191–202PubMedCrossRefGoogle Scholar
  9. 9.
    Burchmore RJ, Rodriguez-Contreras D, McBride K, Merkel P, Barrett MP, Modi G, Sacks D, Landfear SM (2003) Genetic characterization of glucose transporter function in Leishmania mexicana. Proc Natl Acad Sci USA 100:3901–3906PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Fauquenoy S, Morelle W, Hovasses A, Bednarczyk A, Slomianny C, Schaeffer C, Van Dorsselaer A, Tomavo S (2008) Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii–host cell interactions. Mol Cell Proteomics 7:891–910PubMedCrossRefGoogle Scholar
  11. 11.
    Feugeas JP, Néel D, Pavia AA, Laham A, Goussault Y, Derappe C (1990) Glycosylation of the human erythrocyte glucose transporter is essential for glucose transport activity. Biochim Biophys Acta 1030:60–64PubMedCrossRefGoogle Scholar
  12. 12.
    Fiedler K, Simons K (1995) The role of N-glycans in the secretory pathway. Cell 81:309–312PubMedCrossRefGoogle Scholar
  13. 13.
    Finnie JW (2001) Effect of tunicamycin on hepatocytes in vitro. J Comp Pathol 125:318–321PubMedCrossRefGoogle Scholar
  14. 14.
    Galvez Rojas RL, Frossard ML, Machado Motta MC, Silber AM (2008) l-Proline uptake in Crithidia deanei is influenced by its endosymbiont bacterium. FEMS Microbiol Lett 283:15–22PubMedCrossRefGoogle Scholar
  15. 15.
    Gao J, Chen T, Hu G, Gong Y, Qiang B, Yuan J, Peng X (2008) Nectin-like molecule 1 is a glycoprotein with a single N-glycosylation site at N290KS which influences its adhesion activity. Int J Oncol 32(5):1021–1031Google Scholar
  16. 16.
    Gorga FR, Baldwin SA, Lienhard GE (1979) The monosaccharide transporter from human erythrocytes is heterogeneously glycosylated. Biochem Biophys Res Commun 91:955–961PubMedCrossRefGoogle Scholar
  17. 17.
    Gotz G, Gañán S, Parodi AJ (1991) Glucosylation of glycoproteins in Crithidia fasciculata. Mol Biochem Parasitol 45:265–273PubMedCrossRefGoogle Scholar
  18. 18.
    Grazú V, Silber AM, Moros M, Asín L, Torres TE, Marquina C, Ibarra MR, Goya GF (2012) Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections. Int J Nanomed. doi: 10.2147/IJN.S35510 Google Scholar
  19. 19.
    Haspel HC, Wilk EW, Birnbaum MJ, Cushman SW, Rosen OM (1986) Glucose deprivation and hexose transporter polypeptides of murine fibroblasts. J Biol Chem 261:6778–6789PubMedGoogle Scholar
  20. 20.
    Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369PubMedCrossRefGoogle Scholar
  21. 21.
    Hirai-Fujita Y, Yamamoto-Hino M, Kanie O, Goto S (2008) N-Glycosylation of the Drosophila neural protein Chaoptin is essential for its stability, cell surface transport and adhesive activity. FEBS Lett 582:2572–2576PubMedCrossRefGoogle Scholar
  22. 22.
    Holsbeecks I, Lagatie O, Van Nuland A, Van de Velde S, Thevelein JM (2004) The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem Sci 10:556–564CrossRefGoogle Scholar
  23. 23.
    Joet T, Holterman L, Stedman TT et al (2002) Comparative characterization of hexose transporters of Plasmodium knowlesi, Plasmodium yoelii and Toxoplasma gondii highlights functional differences within the apicomplexan family. Biochem J 368:923–929PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kitagawa K, Nishin H, Iwashima A (1985) Effect of tunicamycin on hexose transport in mouse embryo fibroblast Swiss 3T3 cells. Biochim Biophys Acta 821:67–71PubMedCrossRefGoogle Scholar
  25. 25.
    Kitamura A (1982) Attachment of Paramecium to polystyrene surfaces: a model system for the analysis of sexual cell recognition and nuclear activation. J Cell Sci 58:185–199PubMedGoogle Scholar
  26. 26.
    Knodler LA, Schofield PJ, Edwards MR (1992) Glucose transport in Crithidia luciliae. Mol Biochem Parasitol 56:1–14PubMedCrossRefGoogle Scholar
  27. 27.
    Landfear S, Ignatuschenko M (2001) The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol 115:1–17PubMedCrossRefGoogle Scholar
  28. 28.
    Landfear SM (2008) Drugs and transporters in kinetoplastid protozoa. Adv Exp Med Biol 625:22–32PubMedCrossRefGoogle Scholar
  29. 29.
    Landfear SM (2009) Transporters for drug delivery and as drug targets in parasitic protozoa. Clin Pharmacol Ther 87:122–125PubMedCrossRefGoogle Scholar
  30. 30.
    Luk FC, Johnson TM, Beckers CJ (2008) N-Linked glycosylation of proteins in the protozoan parasite Toxoplasma gondii. Mol Biochem Parasitol 157:169–178PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    McDonald CJ, Sampson J (1983) The effects of inhibition of protein glycosylation on the aggregation of Dictyostelium discoideum. J Embryol Exp Morphol 78:229–248PubMedGoogle Scholar
  32. 32.
    Olden K, Pratt RM, Jaworski C, Yamada KM (1979) Evidence for role of glycoprotein carbohydrates in membrane transport: specific inhibition by tunicamycin. Proc Natl Acad Sci USA 76:3343–3347PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Onetti R, Baulida J, Bassols A (1997) Increased glucose transport in ras-transformed fibroblasts: a possible role for N-glycosylation of GLUT1. FEBS Lett 407:267–270PubMedCrossRefGoogle Scholar
  34. 34.
    Opperdoes FR (1987) Compartmentation of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol 41:127–151PubMedCrossRefGoogle Scholar
  35. 35.
    Piras R, Piras MM, Henriquez D (1982) The effect of inhibitors of macromolecular biosynthesis on the in vitro infectivity and morphology of Trypanosoma cruzi trypomastigotes. Mol Biochem Parasitol 6(2):83–92PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Contreras D, Feng X, Keeney KM, Bouwer HG, Landfear SM (2007) Phenotypic characterization of a glucose transporter null mutant in Leishmania Mexicana. Mol Biochem Parasitol 153:9–18PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Roskens H, Erlandsen SL (2002) Inhibition of in vitro attachment of Giardia trophozoites by mucin. J Parasitol 88:69–873CrossRefGoogle Scholar
  38. 38.
    Scolaro EJ, Ames RP, Brittingham A (2005) Growth-phase dependent substrate adhesion in Crithidia fasciculata. J Eukaryot Microbiol 52:17–22PubMedCrossRefGoogle Scholar
  39. 39.
    Souto-Padrón T, de Souza W (1985) Sialoglycoproteins and sialoglycolipids contribute to the negative surface charge of epimastigote and trypomastigote forms of Trypanosoma cruzi. Biochim Biophys Acta 814:163–169PubMedCrossRefGoogle Scholar
  40. 40.
    Souto-Padrón T (1989) de Souza W (1989) The effect of tunicamycin and monensin on the association of Trypanosoma cruzi with resident macrophages. Parasitol Res 76(2):98–106PubMedCrossRefGoogle Scholar
  41. 41.
    Takatsuki A, Tamura G (1982) Inhibition of glycoconjugate biosynthesis by tunicamycin. In: Tamura G (ed) Tunicamycin. Japan Scientific Societies Press, Tokyo, pp 35–70Google Scholar
  42. 42.
    Tetaud E, Chabas S, Giroud C, Barrett MP, Baltz T (1996) Hexose uptake in Trypanosoma cruzi: structure–activity relationship between substrate and transporter. Biochem J 317:353–359PubMedCentralPubMedGoogle Scholar
  43. 43.
    Tetaud E, Barrett MP, Bringaud F, Baltz T (1997) Kinetoplastid glucose transporters. Biochemistry 325:569–580Google Scholar
  44. 44.
    Tielens AG, van Hellemond JJ (2009) Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol 25:482–490PubMedCrossRefGoogle Scholar
  45. 45.
    Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130PubMedCrossRefGoogle Scholar
  46. 46.
    Verlinde CL, Hannaert V, Blonski C, Willson M, Périé JJ, Fothergill-Gilmore LA, Opperdoes FR, Gelb MH, Hol WG, Michels PA (2001) Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist Updat 4:50–65PubMedCrossRefGoogle Scholar
  47. 47.
    Wallace FG (1943) Flagellate parasites of mosquitoes with special reference to Crithidia fasciculata Leger, 1902. J Parasitol 29:196–205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Robert Rojas
    • 1
  • Christopher Segovia
    • 1
  • Annette Nicole Trombert
    • 1
  • Javier Santander
    • 1
  • Patricio Manque
    • 1
  1. 1.Nucleus for Microbiology and Immunity, Center for Genomics and Bioinformatics, Faculty of SciencesUniversidad MayorSantiagoChile

Personalised recommendations