Advertisement

Current Microbiology

, Volume 68, Issue 4, pp 558–567 | Cite as

Comparative Genomic and Proteomic Anatomy of Mycobacterium Ubiquitous Esx Family Proteins: Implications in Pathogenicity and Virulence

  • Wanyan Deng
  • Xiaohong Xiang
  • Jianping XieEmail author
Article

Abstract

Secreted proteins are among the most important molecules involved in host—pathogen interaction of Mycobacterium tuberculosis, the etiological agent of human tuberculosis (TB). M. tuberculosis encodes five types of VII secretion systems (ESX-1 to ESX-5) responsible for the exportation of many proteins. This system mediated substrates including members of the Esx family implicated in tuberculosis pathogenesis and survival within host cells. However, the distribution and evolution of this family remain elusive. To explore the evolution and distribution of Esx family proteins, we analyzed all available Mycobacteria genomes. Interestingly, amino mutations among M. tuberculosis esx family proteins may relate to their functions. We further analyzed the differences between pathogenic Mycobacteria, the attenuated Mycobacteria and non-pathogenic Mycobacteria. The stability, the globular domains and the phosphorylation of serine/threonine residues of M. tuberculosis esx proteins with their homologies among other Mycoabcteria were analyzed. Our comparative genomic and proteomic analysis found that the change of stability, gain or loss of globular domains and phosphorylation of serine/threonine might be responsible for the difference between the pathogenesis and virulence of the esx proteins and its homolog widespread among Mycobacteria and related species, which may provide clues for novel anti-tuberculosis drug targets.

Keywords

Tuberculosis Mycobacterium Globular Domain Instability Index Tuberculosis H37Rv 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded by National Natural Science Foundation (Grant Nos. 81071316, 81271882, 81371), National Megaprojects for Key Infectious Diseases (No. 2008ZX10003-006), New Century Excellent Talents in Universities (NCET-11-0703), Excellent PhD thesis fellowship of southwest university (Grant Nos. kb2009010 and ky2011003), the Fundamental Research Funds for the Central Universities (Grant Nos. XDJK2012D011, XDJK2013D003), Natural Science Foundation Project of CQ CSTC (Grant Nos. CSTC, 2010BB5002). The Chongqing Municipal Committee of Education for postgraduates excellence program (No. YJG123104, No.), The Undergraduates Teaching Reform Program (No. 2011JY052).

Supplementary material

284_2013_507_MOESM1_ESM.xls (31 kb)
Supplementary material 1 (XLS 31 kb)
284_2013_507_MOESM2_ESM.xls (34 kb)
Supplementary material 2 (XLS 34 kb)
284_2013_507_MOESM3_ESM.doc (410 kb)
Supplementary material 3 (DOC 409 kb)
284_2013_507_MOESM4_ESM.doc (410 kb)
Supplementary material 4 (DOC 410 kb)

References

  1. 1.
    Oxlade O, Schwartzman K, Behr MA, Benedetti A, Pai M, Heymann J, Menzies D (2009) Global tuberculosis trends: a reflection of changes in tuberculosis control or in population health? Int J Tuberc Lung Dis 13:1238–1246PubMedGoogle Scholar
  2. 2.
    Vashishtha VM (2009) WHO global tuberculosis control report 2009: tuberculosis elimination is a distant dream. Indian Pediatr 46:401–402PubMedGoogle Scholar
  3. 3.
    Pallen MJ (2002) The ESAT-6/WXG100 superfamily—and a new Gram-positive secretion system? Trends Microbiol 10:209–212PubMedCrossRefGoogle Scholar
  4. 4.
    Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R (2004) ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol 12:500–508PubMedCrossRefGoogle Scholar
  5. 5.
    Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ, Bitter W (2007) Type VII secretion—mycobacteria show the way. Nat Rev Microbiol 5:883–891PubMedCrossRefGoogle Scholar
  6. 6.
    Gey Van Pittius NC, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers AD (2001) The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol 2:RESEARCH0044PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544PubMedCrossRefGoogle Scholar
  8. 8.
    Akpe San Roman S, Facey PD, Fernandez-Martinez L, Rodriguez C, Vallin C, Del Sol R, Dyson P (2010) A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. Microbiology 156:1719–1729PubMedCrossRefGoogle Scholar
  9. 9.
    Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PD, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, Clarke K, Cronin A, Davis P, Goodhead I, Holroyd N, Jagels K, Lord A, Moule S, Mungall K, Norbertczak H, Quail MA, Rabbinowitsch E, Walker D, White B, Whitehead S, Small PL, Brosch R, Ramakrishnan L, Fischbach MA, Parkhill J, Cole ST (2008) Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18:729–741PubMedCrossRefGoogle Scholar
  10. 10.
    Abdallah AM, Savage ND, van Zon M, Wilson L, Vandenbroucke-Grauls CM, van der Wel NN, Ottenhoff TH, Bitter W (2008) The ESX-5 secretion system of Mycobacterium marinum modulates the macrophage response. J Immunol 181:7166–7175PubMedGoogle Scholar
  11. 11.
    Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298PubMedCrossRefGoogle Scholar
  13. 13.
    Volkman HE, Clay H, Beery D, Chang JC, Sherman DR, Ramakrishnan L (2004) Tuberculous granuloma formation is enhanced by a Mycobacterium virulence determinant. PLoS Biol 2:e367PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Raghavan S, Manzanillo P, Chan K, Dovey C, Cox JS (2008) Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454:717–721PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P, Garnier T, Gicquel B, Martin C, Leclerc C, Cole ST, Brosch R (2008) Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4:e33PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, Huygen K, Hernandez-Pando R, Thole J, Behr M, Gicquel B, Martin C (2008) PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 3:e3496PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ohol YM, Goetz DH, Chan K, Shiloh MU, Craik CS, Cox JS (2010) Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 7:210–220PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Serafini A, Boldrin F, Palu G, Manganelli R (2009) Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 191:6340–6344PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng TY, Siddiqi N, Fortune SM, Moody DB, Rubin EJ (2009) Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci USA 106:18792–18797PubMedCrossRefGoogle Scholar
  20. 20.
    Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84PubMedCrossRefGoogle Scholar
  21. 21.
    Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, Smith I, Palu G, Riccardi G, Manganelli R (2007) Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol 189:730–740PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I (2002) ideR, An essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371–3381PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Berthet FX, Rasmussen PB, Rosenkrands I, Andersen P, Gicquel B (1998) A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144:3195–3203PubMedCrossRefGoogle Scholar
  24. 24.
    Okkels LM, Andersen P (2004) Protein-protein interactions of proteins from the ESAT-6 family of Mycobacterium tuberculosis. J Bacteriol 186:2487–2491PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Arbing MA, Kaufmann M, Phan T, Chan S, Cascio D, Eisenberg D (2010) The crystal structure of the Mycobacterium tuberculosis Rv3019c-Rv3020c ESX complex reveals a domain-swapped heterotetramer. Protein Sci 19:1692–1703PubMedCrossRefGoogle Scholar
  26. 26.
    Lightbody KL, Ilghari D, Waters LC, Carey G, Bailey MA, Williamson RA, Renshaw PS, Carr MD (2008) Molecular features governing the stability and specificity of functional complex formation by Mycobacterium tuberculosis CFP-10/ESAT-6 family proteins. J Biol Chem 283:17681–17690PubMedCrossRefGoogle Scholar
  27. 27.
    Lightbody KL, Renshaw PS, Collins ML, Wright RL, Hunt DM, Gordon SV, Hewinson RG, Buxton RS, Williamson RA, Carr MD (2004) Characterisation of complex formation between members of the Mycobacterium tuberculosis complex CFP-10/ESAT-6 protein family: towards an understanding of the rules governing complex formation and thereby functional flexibility. FEMS Microbiol Lett 238:255–262PubMedGoogle Scholar
  28. 28.
    Meher AK, Bal NC, Chary KV, Arora A (2006) Mycobacterium tuberculosis H37Rv ESAT-6-CFP-10 complex formation confers thermodynamic and biochemical stability. FEBS J 273:1445–1462PubMedCrossRefGoogle Scholar
  29. 29.
    Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G, Frenkiel TA, Gordon SV, Hewinson RG, Burke B, Norman J, Williamson RA, Carr MD (2005) Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24:2491–2498PubMedCrossRefGoogle Scholar
  30. 30.
    Renshaw PS, Panagiotidou P, Whelan A, Gordon SV, Hewinson RG, Williamson RA, Carr MD (2002) Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. J Biol Chem 277:21598–21603PubMedCrossRefGoogle Scholar
  31. 31.
    Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, Gey van Pittius NC, Pym AS, Rubin EJ, Sherman DR, Cole ST, Brosch R (2009) Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 5:e1000507PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, Sherman DR, Bloom BR, Rubin EJ (2005) Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci USA 102:10676–10681PubMedCrossRefGoogle Scholar
  33. 33.
    McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL, Cox JS, Brown EJ (2007) A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog 3:e105PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Xu J, Laine O, Masciocchi M, Manoranjan J, Smith J, Du SJ, Edwards N, Zhu X, Fenselau C, Gao LY (2007) A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol 66:787–800PubMedCrossRefGoogle Scholar
  35. 35.
    Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539PubMedCrossRefGoogle Scholar
  36. 36.
    Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell RG, Derrick SC, Collins FM, Morris SL, King CH, Jacobs WR Jr (2003) The primary mechanism of attenuation of bacillus Calmette–Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 100:12420–12425PubMedCrossRefGoogle Scholar
  37. 37.
    Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994PubMedCrossRefGoogle Scholar
  38. 38.
    Stanley SA, Raghavan S, Hwang WW, Cox JS (2003) Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA 100:13001–13006PubMedCrossRefGoogle Scholar
  39. 39.
    Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S, Sherman DR (2004) Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 51:359–370PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Alderson MR, Bement T, Day CH, Zhu L, Molesh D, Skeiky YA, Coler R, Lewinsohn DM, Reed SG, Dillon DC (2000) Expression cloning of an immunodominant family of Mycobacterium tuberculosis antigens using human CD4(+) T cells. J Exp Med 191:551–560PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Rosenkrands I, Weldingh K, Jacobsen S, Hansen CV, Florio W, Gianetri I, Andersen P (2000) Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21:935–948PubMedCrossRefGoogle Scholar
  42. 42.
    Skjot RL, Oettinger T, Rosenkrands I, Ravn P, Brock I, Jacobsen S, Andersen P (2000) Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect Immun 68:214–220PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Andersen P, Andersen AB, Sorensen AL, Nagai S (1995) Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice. J Immunol 154:3359–3372PubMedGoogle Scholar
  44. 44.
    Pollock JM, Andersen P (1997) Predominant recognition of the ESAT-6 protein in the first phase of interferon with Mycobacterium bovis in cattle. Infect Immun 65:2587–2592PubMedCentralPubMedGoogle Scholar
  45. 45.
    Ravn P, Demissie A, Eguale T, Wondwosson H, Lein D, Amoudy HA, Mustafa AS, Jensen AK, Holm A, Rosenkrands I, Oftung F, Olobo J, von Reyn F, Andersen P (1999) Human T cell responses to the ESAT-6 antigen from Mycobacterium tuberculosis. J Infect Dis 179:637–645PubMedCrossRefGoogle Scholar
  46. 46.
    Elhay MJ, Oettinger T, Andersen P (1998) Delayed-type hypersensitivity responses to ESAT-6 and MPT64 from Mycobacterium tuberculosis in the guinea pig. Infect Immun 66:3454–3456PubMedCentralPubMedGoogle Scholar
  47. 47.
    van Pinxteren LA, Ravn P, Agger EM, Pollock J, Andersen P (2000) Diagnosis of tuberculosis based on the two specific antigens ESAT-6 and CFP10. Clin Diagn Lab Immunol 7:155–160PubMedCentralPubMedGoogle Scholar
  48. 48.
    Majlessi L, Rojas MJ, Brodin P, Leclerc C (2003) CD8+-T-cell responses of Mycobacterium-infected mice to a newly identified major histocompatibility complex class I-restricted epitope shared by proteins of the ESAT-6 family. Infect Immun 71:7173–7177PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Skjot RL, Brock I, Arend SM, Munk ME, Theisen M, Ottenhoff TH, Andersen P (2002) Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect Immun 70:5446–5453PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Reyrat JM, Kahn D (2001) Mycobacterium smegmatis: an absurd model for tuberculosis? Trends Microbiol 9:472–474PubMedCrossRefGoogle Scholar
  51. 51.
    Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011PubMedCrossRefGoogle Scholar
  52. 52.
    Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898PubMedGoogle Scholar
  53. 53.
    Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life SciencesSouthwest UniversityBeibeiChina

Personalised recommendations