Current Microbiology

, Volume 68, Issue 4, pp 419–427 | Cite as

Stability of the Maternal Gut Microbiota During Late Pregnancy and Early Lactation

  • Ted Jost
  • Christophe Lacroix
  • Christian Braegger
  • Christophe Chassard


Scarce research has been performed to assess whether the human maternal gut microbiota undergoes changes during the perinatal period. Therefore, in the present study, gut microbiota composition of seven healthy mothers(to-be) was assessed at different time points during the perinatal period (i.e. weeks 3–7 prepartum and days 3–6, 9–14, and 25–30 postpartum) using quantitative polymerase chain reaction (qPCR) and pyrosequencing, and was complemented by short-chain fatty acids (SCFA) and calprotectin quantification using high-performance liquid chromatography and enzyme-linked immunosorbent assay, respectively. qPCR revealed the predominance of members of the Firmicutes, Bacteroides, and Bifidobacterium without detectable changes over the perinatal period. Pyrosequencing supported these data in terms of microbiota stability for any population at any taxonomic level, although ratios of members of the Actinobacteria and Bacteroidetes differed between the two methods. However, the number of operational taxonomic units observed by pyrosequencing was subjected to fluctuations and the relative abundance of Streptococcus decreased numerically postpartum (P = 0.11), which may indicate that aberrancies in subdominant populations occur perinatally. Furthermore, total fecal SCFA concentrations, particularly the branched-chain fatty acids isobutyrate and isovalerate, were higher than for non-pregnant subjects throughout the perinatal period. This suggests metabolic changes and increased energy extraction via proteolytic, in addition to saccharolytic fermentation, accompanied by low-grade inflammation based on fecal calprotectin levels. Our data show that the maternal gut microbiota remained stable over the perinatal period despite altered metabolic activity and low-grade inflammation; however, it remains to be confirmed whether changes preceded earlier during pregnancy and succeeded later postpartum.


Actinobacteria Firmicutes Bacteroidetes Perinatal Period Total Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by Nestlé Nutrition (Vevey, Switzerland), Nestec (Lausanne, Switzerland), and the Swiss Foundation for Nutrition Research (SFEFS) (Zurich, Switzerland) for the purpose of basic research only. The authors are grateful to Patrick Bühr, Michael Friedt, Petra Martel, Daniela Rogler, and Rebekka Koller at the University Children’s Hospital Zurich for their effort in volunteer recruitment and sampling, and to Valérie Béguin for assisting in qPCR analyses, carried out at the Genetic Diversity Centre of ETH Zurich (Zurich, Switzerland).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3(7):e2836. doi: 10.1371/journal.pone.0002836 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Armougom F, Raoult D (2008) Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans. BMC Genomics 9:576. doi: 10.1186/1471-2164-9-576 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D (2009) Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One 4(9):e7125. doi: 10.1371/journal.pone.0007125 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, M’Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. doi: 10.1038/nature09944 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Cani PD, Delzenne NM (2011) The gut microbiome as therapeutic target. Pharmacol Ther 130(2):202–212. doi: 10.1016/j.pharmthera.2011.01.012 PubMedCrossRefGoogle Scholar
  6. 6.
    Carroccio A, Iacono G, Cottone M, Di Prima L, Cartabellotta F, Cavataio F, Scalici C, Montalto G, Di Fede G, Rini G, Notarbartolo A, Averna MR (2003) Diagnostic accuracy of fecal calprotectin assay in distinguishing organic causes of chronic diarrhea from irritable bowel syndrome: a prospective study in adults and children. Clin Chem 49(6 Pt 1):861–867PubMedCrossRefGoogle Scholar
  7. 7.
    Chao A, Shen T-J (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10(15):429–443CrossRefGoogle Scholar
  8. 8.
    Chiloiro M, Darconza G, Piccioli E, De Carne M, Clemente C, Riezzo G (2001) Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol 36(8):538–543PubMedCrossRefGoogle Scholar
  9. 9.
    Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270. doi: 10.1016/j.cell.2012.01.035 PubMedCrossRefGoogle Scholar
  10. 10.
    Cleusix V, Lacroix C, Vollenweider S, Le Blay G (2008) Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS Microbiol Ecol 63(1):56–64. doi: 10.1111/j.1574-6941.2007.00412.x PubMedCrossRefGoogle Scholar
  11. 11.
    Cleusix V, Lacroix C, Dasen G, Leo M, Le Blay G (2010) Comparative study of a new quantitative real-time PCR targeting the xylulose-5-phosphate/fructose-6-phosphate phosphoketolase bifidobacterial gene (xfp) in faecal samples with two fluorescence in situ hybridization methods. J Appl Microbiol 108(1):181–193. doi: 10.1111/j.1365-2672.2009.04408.x PubMedCrossRefGoogle Scholar
  12. 12.
    Collado MC, Isolauri E, Laitinen K, Salminen S (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88(4):894–899PubMedGoogle Scholar
  13. 13.
    Costa F, Mumolo MG, Bellini M, Romano MR, Ceccarelli L, Arpe P, Sterpi C, Marchi S, Maltinti G (2003) Role of faecal calprotectin as non-invasive marker of intestinal inflammation. Digestive and liver disease: official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 35(9):642–647CrossRefGoogle Scholar
  14. 14.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107(33):14691–14696. doi: 10.1073/pnas.1005963107 PubMedCrossRefGoogle Scholar
  15. 15.
    Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6(3):209–240. doi: 10.1007/s12263-011-0229-7 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gueimonde M, Debor L, Tolkko S, Jokisalo E, Salminen S (2007) Quantitative assessment of faecal bifidobacterial populations by real-time PCR using lanthanide probes. J Appl Microbiol 102(4):1116–1122. doi: 10.1111/j.1365-2672.2006.03145.x PubMedGoogle Scholar
  17. 17.
    Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F (2010) From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 23(2):366–384. doi: 10.1017/S0954422410000247 PubMedCrossRefGoogle Scholar
  18. 18.
    Jaskiewicz J, Zhao Y, Hawes JW, Shimomura Y, Crabb DW, Harris RA (1996) Catabolism of isobutyrate by colonocytes. Arch Biochem Biophys 327(2):265–270. doi: 10.1006/abbi.1996.0120 PubMedCrossRefGoogle Scholar
  19. 19.
    Jost T, Lacroix C, Braegger CP, Chassard C (2012) New insights in gut microbiota establishment in healthy breast fed neonates. PLoS One 7(8):e44595. doi: 10.1371/journal.pone.0044595 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Jost T, Lacroix C, Braegger C, Chassard C (2013) Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr. doi: 10.1017/S0007114513000597 PubMedGoogle Scholar
  21. 21.
    Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C (2013) Vertical mother–neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol. doi: 10.1111/1462-2920.12238 Google Scholar
  22. 22.
    Ke D, Picard FJ, Martineau F, Menard C, Roy PH, Ouellette M, Bergeron MG (1999) Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol 37(11):3497–3503PubMedCentralPubMedGoogle Scholar
  23. 23.
    Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, Gonzalez A, Werner JJ, Angenent LT, Knight R, Backhed F, Isolauri E, Salminen S, Ley RE (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480. doi: 10.1016/j.cell.2012.07.008 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lawson M, Kern F Jr, Everson GT (1985) Gastrointestinal transit time in human pregnancy: prolongation in the second and third trimesters followed by postpartum normalization. Gastroenterology 89(5):996–999PubMedGoogle Scholar
  25. 25.
    Lee ZM, Bussema C 3rd, Schmidt TM (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res (Database issue) 37:D489–493. doi: 10.1093/nar/gkn689 CrossRefGoogle Scholar
  26. 26.
    Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123. doi: 10.1186/1471-2180-9-123 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Martín R, Langa S, Reviriego C, Jiménez E, Marín ML, Olivares M, Boza J, Jiménez J, Fernández L, Xaus J, Rodríguez JM (2004) The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol 15(3–4):121–127CrossRefGoogle Scholar
  28. 28.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. doi: 10.1126/science.1223813 PubMedCrossRefGoogle Scholar
  29. 29.
    Payne AN, Chassard C, Zimmermann M, Muller P, Stinca S, Lacroix C (2011) The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr Diabetes 1:e12. doi: 10.1038/nutd.2011.8 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin EJ, Donnet-Hughes A (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119(3):e724–e732. doi: 10.1542/peds.2006-1649 PubMedCrossRefGoogle Scholar
  31. 31.
    Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9(9):2125–2136. doi: 10.1111/j.1462-2920.2007.01369.x PubMedCrossRefGoogle Scholar
  32. 32.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. doi: 10.1128/AEM.01541-09 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195. doi: 10.1038/oby.2009.167 CrossRefGoogle Scholar
  34. 34.
    Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65(11):4799–4807PubMedCentralPubMedGoogle Scholar
  35. 35.
    van den Bogert B, de Vos WM, Zoetendal EG, Kleerebezem M (2011) Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl Environ Microbiol 77(6):2071–2080. doi: 10.1128/AEM.02477-10 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi: 10.1128/AEM.00062-07 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227. doi: 10.1038/nature11053 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ted Jost
    • 1
  • Christophe Lacroix
    • 1
  • Christian Braegger
    • 2
  • Christophe Chassard
    • 1
  1. 1.Laboratory of Food Biotechnology, Institute of Food, Nutrition and HealthETH ZurichZurichSwitzerland
  2. 2.Division of Gastroenterology and NutritionUniversity Children’s Hospital ZurichZurichSwitzerland

Personalised recommendations