Current Microbiology

, Volume 68, Issue 2, pp 204–210 | Cite as

Bactericidal Genes of Staphylococcal Bacteriophage Sb-1

  • Ekaterine Tevdoradze
  • Leila Kvachadze
  • Mzia KutateladzeEmail author
  • Charles R. StewartEmail author


Bacteriophage genes offer a potential resource for development of new antibiotics. Here, we identify at least six genes of Staphylococcus aureus phage Sb-1 that have bactericidal activity when expressed in Escherichia coli. Since the natural host is gram-positive, and E. coli is gram-negative, it is likely that a variety of quite different bacterial pathogens would be susceptible to each of these bactericidal activities, which therefore might serve as the basis for development of new wide-spectrum antibiotics. We show that two of these gene products target E. coli protein synthesis.


Bactericidal Activity Early Promoter BglII Site Lytic Bacteriophage Cytotoxic Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed with support of the DHHS Biotechnology Engagement Program (BTEP 20/ISTC G-595 project).


  1. 1.
    Amini S, Tavazoie S (2011) Antibiotics and the post-genome revolution. Curr Op Microbiol 14:513–518CrossRefGoogle Scholar
  2. 2.
    Butler MS, Cooper MA (2012) Screening strategies to identify new antibiotics. Curr Drug Targets 13:373–387PubMedCrossRefGoogle Scholar
  3. 3.
    Chanishvili N, Sharp R (2008) Bacteriophage therapy: experience from the Eliava Institute, Georgia. Aust Microbiol 20:96–101Google Scholar
  4. 4.
    Chibani-Chennoufi S, Dillman ML, Marvin-Guy L, Rami-Shojaei S, Brussow H (2004) Lactobacillus plantarum bacteriophage LP65: a new member of the SPO1-like genus of the family Myoviridae. J Bacteriol 186:7069–7083PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Cole ST, Riccardi G (2011) New tuberculosis drugs on the horizon. Curr Opin Microbiol 14:570–576PubMedCrossRefGoogle Scholar
  6. 6.
    Deghorain M, Van Melderen L (2012) The Staphylococci phages family: an overview. Viruses 4:3316–3335PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11:393–400PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Fox JL (2012) Alarm sounded over totally drug-resistant tuberculosis, gonorrhea. Microbe 7:159–160Google Scholar
  9. 9.
    Gargano L, Hughes J (2013) Emerging microbial threats: communication challenges and opportunities. Microbe 8:205–211Google Scholar
  10. 10.
    Jabes D (2011) The antibiotic R&D pipeline: an update. Curr Opin Microbiol 14:564–569PubMedCrossRefGoogle Scholar
  11. 11.
    Klumpp J, Lavigne R, Loessner MJ, Ackermann HW (2010) The SPO1- related bacteriophages. Arch Virol 155:1547–1561PubMedCrossRefGoogle Scholar
  12. 12.
    Kutateladze M, Adamia R (2008) Phage therapy experience at the Eliava Institute. Med Mal Infect 38:426–430PubMedCrossRefGoogle Scholar
  13. 13.
    Kutter E, White T, Kashlev M, McKinney J, Guttman B (1994) Effects on host genome structure and expression. In: Karam JD (ed) Molecular biology of bacteriophage T4. ASM, Washington, pp 357–368Google Scholar
  14. 14.
    Kvachadze L, Balarjishvili N, Meskhi T, Tevdoradze E, Skhirtladze N, Pataridze T, Adamia R, Topuria T, Kutter E, Rohde C, Kutateladze K (2011) Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotech 4:643–650CrossRefGoogle Scholar
  15. 15.
    Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 102:5174–5179PubMedCrossRefGoogle Scholar
  16. 16.
    Lavigne R, Darius P, Summer E, Seto D, Mahadevan P, Nilsson A, Ackermann H, Kropinski A (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lewis K (2012) Antibiotics: recover the lost art of drug discovery. Nature 485:439–440PubMedCrossRefGoogle Scholar
  18. 18.
    Liu J, Dehbi M, Moeck G, Arhin F, Bauda P, Bergeron D, Callejo M, Ferretti V, Ha N, Kwan T et al (2004) Antimicrobial drug discovery through bacteriophage genomics. Nature Biotech 22:185–191CrossRefGoogle Scholar
  19. 19.
    Łobocka M, Hejnowicz MS, Da˛ browski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dabrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Głowacka A (2012) Genomics of staphylococcal Twort-like phages-potential therapeutics of the post-antibiotic era. Adv Virus Res 83:143–216PubMedGoogle Scholar
  20. 20.
    Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumonia with a bacteriophage cell wall hydrolase. Science 294:2170–2172PubMedCrossRefGoogle Scholar
  21. 21.
    Merabishvili M, Pirnay J-P, Verbeken G, Chanishvili N, Tediashvili M et al (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4:e4944PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Nechaev S, Severinov K (2008) The elusive object of desire-interactions of bacteriophages and their hosts. Curr Op Microbiol 11:186–193CrossRefGoogle Scholar
  23. 23.
    O’Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP (2004) Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content. J Bacteriol 186:2862–2871PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, NYGoogle Scholar
  25. 25.
    Sampath A, Stewart CR (2004) Roles of genes 44, 50 and 51 in regulating gene expression and host-takeover during infection of Bacillus subtilis by bacteriophage SPO1. J Bacteriol 186:1785–1792PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889PubMedCrossRefGoogle Scholar
  27. 27.
    Shibayama Y, Dabbs ER (2011) Phage as a source of antibacterial genes: multiple inhibitory products encoded by Rhodococcus phage YF1. Bacteriophage 1:195–197PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Stanton TB (2013) A call for antibiotic alternatives research. Trends Microbiol 21:111–113PubMedCrossRefGoogle Scholar
  29. 29.
    Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME, Peebles CL, Hatfull GF, Hendrix RW, Huang WM, Pedulla MI (2009) The genome of Bacillus subtilis bacteriophage SPO1. J Mol Biol 388:48–70PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Stewart CR, Gaslightwala I, Hinata K, Krolikowski KA, Needleman DS, Peng AS-Y, Peterman MA, Tobias A, Wei P (1998) Genes and regulatory sites of the “host-takeover module” in the terminal redundancy of Bacillus subtilis bacteriophage SP01. Virol 246:329–340CrossRefGoogle Scholar
  31. 31.
    Studier FW (1991) Use of bacteriophage T7 Lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44PubMedCrossRefGoogle Scholar
  32. 32.
    Lancet The (2009) Urgently needed: new antibiotics. Lancet 374:1868Google Scholar
  33. 33.
    Wei P, Stewart CR (1993) A cytotoxic early gene of Bacillus subtilis bacteriophage SPO1. J Bacteriol 175:7887–7900PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratory of Molecular BiologyG. Eliava Institute of Bacteriophages, Microbiology and VirologyTbilisiGeorgia
  2. 2.Department of Biochemistry and Cell BiologyRice UniversityHoustonUSA
  3. 3.Department of Arts and SciencesIlia State UniversityTbilisiGeorgia

Personalised recommendations