Advertisement

Current Microbiology

, Volume 68, Issue 1, pp 38–46 | Cite as

Culturable Heterotrophic Bacteria Associated with Healthy and Bleached Scleractinian Madracis decactis and the Fireworm Hermodice carunculata from the Remote St. Peter and St. Paul Archipelago, Brazil

  • Ana Paula B. Moreira
  • Luciane A. Chimetto Tonon
  • Cecilia do Valle P. Pereira
  • Nelson AlvesJr.
  • Gilberto M. Amado-Filho
  • Ronaldo Bastos Francini-Filho
  • Rodolfo Paranhos
  • Fabiano L. Thompson
Article

Abstract

We report on the first characterization of the culturable heterotrophic bacteria of the scleractinian Madracis decactis. In addition, we characterized the culturable bacteria associated with the fireworm Hermodice carunculata, observed predating partially bleached coral colonies. Our study was carried out in the remote St. Peter and St. Paul Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil. We constituted a 403 isolates collection and subsequently characterized it by means of pyrH and 16S rRNA partial sequences. We identified Photobacterium, Bacillus, and Vibrio species as members of the culturable microbiota of healthy M. decactis. V. campbellii, V. harveyi, V. communis, and V. maritimus were the most commonly found Vibrio species in healthy corals, representing more than 60 % of all vibrio isolates. Most of the vibrios isolated from the fireworm’s tissues (n = 143; >90 %) were identified as V. shiloi. However, we did not recover V. shiloi from bleached M. decactis. Instead, we isolated V. communis, a novel Photobacterium species, Bacillus, Kocuria, and Pseudovibrio, suggesting a possible role of other facultative anaerobic bacteria and/or environmental features (such as water quality) in the onset of bleaching in SPSPA’s M. decactis.

Keywords

Vibrio Bleached Coral Total Bacterial Count Kocuria Coral Mucus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico Grants to APBM, GMAF, RBFF, and FLT. Comissão Interministerial para os Recursos do Mar partially supported the expedition. Jardim Botânico do Rio de Janeiro provided transportation of equipments and samples. The authors thank Transmar III crew; Ericka Coni for integrating the expedition and contributing with sampling; Douglas Abrantes and Camilo Ferreira for general logistical support.

Supplementary material

284_2013_435_MOESM1_ESM.pdf (138 kb)
Supplementary material 1 (PDF 139 kb)
284_2013_435_MOESM2_ESM.pdf (189 kb)
Supplementary material 2 (PDF 190 kb)
284_2013_435_MOESM3_ESM.pdf (649 kb)
Supplementary material 3 (PDF 650 kb)

References

  1. 1.
    Ahrens JB, Borda E, Barroso Rm, Paiva PC, Campbell AM, Wolf A, Nugues MM, Rouse GW, Schulze A (2013) The curious case of Hermodice carunculata (Annelida: Amphinomidae): evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins. Mol Ecol 22:2280–2291. doi: 10.1111/mec.12263 PubMedCrossRefGoogle Scholar
  2. 2.
    Alves N Jr, Neto OSM, Silva BSO, De Moura RL, Francini-Filho RB, Barreira e Castro C, Paranhos R, Bitner-Mathé BC, Kruger RH, Vicente ACP, Thompson CC, Thompson FL (2010) Diversity and pathogenic potential of vibrios isolated from Abrolhos Bank corals. Environ Microbiol Rep 2(1):90–95. doi: 10.1111/j.1758-2229.2009.00101.x PubMedCrossRefGoogle Scholar
  3. 3.
    Araujo M, Cintra M (2009) Modelagem matemática da circulação oceânica na região equatorial do Arquipélago de São Pedro e São Paulo. O Arquipélago de São Pedro e São Paulo, vol 10 pp 106-113Google Scholar
  4. 4.
    Austin B, Austin D, Sutherland R, Thompson F, Swings J (2005) Pathogenicity of vibrios to rainbow trout (Oncor hynchus mykiss, Walbaum) and Artemia nauplii. Environ Microbiol 7(9):1488–1495. doi: 10.1111/j.1462-2920.2005.00847.x PubMedCrossRefGoogle Scholar
  5. 5.
    Banin E, Israely T, Kushmaro A, Loya Y, Orr E, Rosenberg E (2000) Penetration of the coral-bleaching bacterium Vibrio shiloi into Oculina patagonica. Appl Environ Microbiol 66(7):3031–3036PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Bell P (1992) Eutrophication and coral reefs—some examples in the Great Barrier Reef lagoon. Water Res 26(5):553–568CrossRefGoogle Scholar
  7. 7.
    Ben-Haim Y, Thompson F, Thompson C, Cnockaert M, Hoste B, Swings J, Rosenberg E (2003) Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 53(1):309–315PubMedCrossRefGoogle Scholar
  8. 8.
    Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7(8):1162–1174. doi: 10.1111/j.1462-2920.2005.00793.x PubMedCrossRefGoogle Scholar
  9. 9.
    Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2(4):350–363. doi: 10.1038/ismej.2007.112 PubMedCrossRefGoogle Scholar
  10. 10.
    Bruce T, Meirelles PM, Garcia G, Paranhos R, Rezende CE, de Moura RL, Coni EO, Vasconcelos AT, Amado Filho G, Hatay M (2012) Abrolhos Bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data. PLoS ONE 7(6):e36687PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Castro B, Pires D (2006) Reproductive biology of Madracis decactis (Lyman, 1859) (Cnidaria, Scleractinia) from southern Bahia reefs, Brazil. Arq Mus Nac 64:19–27Google Scholar
  12. 12.
    Chen M-H, Sheu S-Y, Chen CA, Wang J-T, Chen W-M (2013) Corallomonas stylophorae gen. nov., sp. nov., a halophilic bacterium isolated from the reef-building coral Stylophora pistillata. Int J Syst Evol Microbiol 63(Pt 3):982–988PubMedCrossRefGoogle Scholar
  13. 13.
    Chimetto LA, Brocchi M, Thompson CC, Martins RC, Ramos HR, Thompson FL (2008) Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Syst Appl Microbiol 31(4):312–319PubMedCrossRefGoogle Scholar
  14. 14.
    Chimetto L, Brocchi M, Gondo M, Thompson C, Gomez-Gil B, Thompson F (2009) Genomic diversity of vibrios associated with the Brazilian coral Mussismilia hispida and its sympatric zoanthids (Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). J Appl Microbiol 106(6):1818–1826PubMedCrossRefGoogle Scholar
  15. 15.
    Chimetto LA, Cleenwerck I, Alves N, Silva BS, Brocchi M, Willems A, De Vos P, Thompson FL (2011) Vibrio communis sp. nov., isolated from the marine animals Mussismilia hispida, Phyllogorgia dilatata, Palythoa caribaeorum, Palythoa variabilis and Litopenaeus vannamei. ISME J 61(2):362–368Google Scholar
  16. 16.
    Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F, Wegley L, Hatay M, Hall D, Brown E, Haynes M (2008) Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3(2):e1584PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ducklow HW, Mitchell R (1979) Composition of mucus released by coral reef coelenterates. Limnol Oceanogr 24(4):706–714CrossRefGoogle Scholar
  18. 18.
    Edwards A, Lubbock R (1983) Marine zoogeography of St. Paul’s Rocks. J Biogeogr 10:65–72CrossRefGoogle Scholar
  19. 19.
    Edwards A, Lubbock R (1983) The ecology of Saint Paul’s Rocks (Equatorial Atlantic). J Zool 200(1):51–69CrossRefGoogle Scholar
  20. 20.
    Jukes T, Cantor C (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132CrossRefGoogle Scholar
  21. 21.
    Kobayashi T, Enomoto S, Sakazaki R, Kuwahara S (1963) A new selective isolation medium for the Vibrio group on a modified Nakanishi’s medium (TCBS agar medium). Nihon Saikingaku Zasshi 18:387PubMedCrossRefGoogle Scholar
  22. 22.
    Kooperman N, Ben-Dov E, Kramarsky-Winter E, Barak Z, Kushmaro A (2007) Coral mucus-associated bacterial communities from natural and aquarium environments. FEMS Microbiol Lett 276(1):106–113PubMedCrossRefGoogle Scholar
  23. 23.
    Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72(8):5254–5259. doi: 10.1128/aem.00554-06 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E (2001) Vibrio shiloi sp. nov., the causative agent of bleaching of the coral Oculina patagonica. ISME J 51(4):1383–1388Google Scholar
  25. 25.
    Lampert Y, Kelman D, Dubinsky Z, Nitzan Y, Hill RT (2006) Diversity of culturable bacteria in the mucus of the Red Sea coral Fungia scutaria. FEMS Microbiol Ecol 58(1):99–108. doi: 10.1111/j.1574-6941.2006.00136.x PubMedCrossRefGoogle Scholar
  26. 26.
    Lewis JB (1997) Abundance, distribution and partial mortality of the massive coral Siderastrea siderea on degrading coral reefs at Barbados, West Indies. Mar Pollut Bull 34(8):622–627CrossRefGoogle Scholar
  27. 27.
    Littman RA, Bourne DG, Willis BL (2010) Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Mol Ecol 19(9):1978–1990. doi: 10.1111/j.1365-294X.2010.04620.x PubMedCrossRefGoogle Scholar
  28. 28.
    Looney EE, Sutherland KP, Lipp EK (2010) Effects of temperature, nutrients, organic matter and coral mucus on the survival of the coral pathogen, Serratia marcescens PDL100. Environ Microbiol 12(9):2479–2485. doi: 10.1111/j.1462-2920.2010.02221.x PubMedCrossRefGoogle Scholar
  29. 29.
    Luiz OJ, Edwards AJ (2011) Extinction of a shark population in the Archipelago of Saint Paul’s Rocks (equatorial Atlantic) inferred from the historical record. Biol Conserv 144(12):2873–2881. doi: 10.1016/j.biocon.2011.08.004 CrossRefGoogle Scholar
  30. 30.
    Luna GM, Biavasco F, Danovaro R (2007) Bacteria associated with the rapid tissue necrosis of stony corals. Environ Microbiol 9(7):1851–1857. doi: 10.1111/j.1462-2920.2007.01287.x PubMedCrossRefGoogle Scholar
  31. 31.
    Marsden JR (1962) A coral-eating polychaete. Nature 193:598CrossRefGoogle Scholar
  32. 32.
    Migotto A (1997) Anthozoan bleaching on the southeastern coast of Brazil in the summer of 1994. In: 6th International conference of coelenterate biology, Leeuwenhorst, 1995. ICCB, Leeuwenhorst, pp 329–335Google Scholar
  33. 33.
    Nascimento SM, França JV, Gonçalves JEA, Ferreira CEL (2012) Ostreopsis cf. ovata (Dinophyta) bloom in an equatorial island of the Atlantic Ocean. Mar Pollut Bull 64(5):1074–1078. doi: 10.1016/j.marpolbul.2012.03.015 PubMedCrossRefGoogle Scholar
  34. 34.
    Neves E, Johnsson R (2009) Taxonomic revision of the southwestern Atlantic Madracis and the description of Madracis fragilis n. sp. (Scleractinia: Pocilloporidae), a new coral species from Brazil. Sci Mar 73(4):739–746. doi: 10.3989/scimar.2009.73n4739 CrossRefGoogle Scholar
  35. 35.
    Nunes FLD, Norris RD, Knowlton N (2011) Long distance dispersal and connectivity in amphi-Atlantic corals at regional and basin scales. PLoS ONE 6(7):e22298. doi: 10.1371/journal.pone.0022298 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Oliver JD (1993) Formation of viable but nonculturable cells. In: Kjelleberg S (ed) Starvation in bacteria. Plenum Press, New York, pp 239–272CrossRefGoogle Scholar
  37. 37.
    Ott B, Lewis JB (1972) The importance of the gastropod Coralliophila abbreviata (Lamarck) and the polychaete Hermodice carunculata (Pallas) as coral reef predators. Can J Zool 50(12):1651–1656CrossRefGoogle Scholar
  38. 38.
    Paramasivam N, Ben-Dov E, Arotsker L, Kushmaro A (2013) Eilatimonas milleporae gen. nov., sp. nov., a marine bacterium isolated from Millepora dichotoma, a hydrocoral of the Red Sea. Int J Syst Evol Microbiol 63(Pt 5):1880–1884Google Scholar
  39. 39.
    Pereira-Filho GH, Amado-Filho GM, de Moura RL, Bastos AC, Guimarães SM, Salgado LT, Francini-Filho RB, Bahia RG, Abrantes DP, Guth AZ (2011) Extensive Rhodolith beds cover the summits of southwestern Atlantic Ocean seamounts. J Coast Res 28(1):261–269Google Scholar
  40. 40.
    Pitcher D, Saunders N, Owen R (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8(4):151–156CrossRefGoogle Scholar
  41. 41.
    Reshef L, Ron E, Rosenberg E (2008) Genome analysis of the coral bleaching pathogen Vibrio shiloi. Arch Microbiol 190(2):185–194. doi: 10.1007/s00203-008-0388-0 PubMedCrossRefGoogle Scholar
  42. 42.
    Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14CrossRefGoogle Scholar
  43. 43.
    Rosenberg E, Falkovitz L (2004) The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Annu Rev Microbiol 58(1):143–159. doi: 10.1146/annurev.micro.58.030603.123610 PubMedCrossRefGoogle Scholar
  44. 44.
    Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5(5):355–362. doi: 10.1038/nrmicro1635 PubMedCrossRefGoogle Scholar
  45. 45.
    Rowher F (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10CrossRefGoogle Scholar
  46. 46.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  47. 47.
    Santos E, Alves N, Dias GM, Mazotto AM, Vermelho A, Vora GJ, Wilson B, Beltran VH, Bourne DG, Le Roux F, Thompson FL (2011) Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J 5(9):1471–1483. doi: 10.1038/ismej.2011.19 CrossRefGoogle Scholar
  48. 48.
    Shieh WY (2004) Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 54(6):2307–2312. doi: 10.1099/ijs.0.63107-0 PubMedCrossRefGoogle Scholar
  49. 49.
    Sussman M, Loya Y, Fine M, Rosenberg E (2003) The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environ Microbiol 5(4):250–255PubMedCrossRefGoogle Scholar
  50. 50.
    Sutherland KP, Porter JW, Turner JW, Thomas BJ, Looney EE, Luna TP, Meyers MK, Futch JC, Lipp EK (2010) Human sewage identified as likely source of white pox disease of the threatened Caribbean elkhorn coral, Acropora palmata. Environ Microbiol 12(5):1122–1131. doi: 10.1111/j.1462-2920.2010.02152.x PubMedCrossRefGoogle Scholar
  51. 51.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCrossRefGoogle Scholar
  52. 52.
    Thompson FL, Hoste B, Vandemeulebroecke K, Swings J (2001) Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24(4):520–538. doi: 10.1078/0723-2020-00067 PubMedCrossRefGoogle Scholar
  53. 53.
    Thompson FL, Thompson CC, Naser S, Hoste B, Vandemeulebroecke K, Munn CB, Bourne DG, Swings J (2005) Photobacterium rosenbergii sp. nov. and Enterovibrio coralii sp. nov., vibrios associated with coral bleaching. Int J Syst Evol Microbiol 55(2):913–917. doi: 10.1099/ijs.0.63370-0 PubMedCrossRefGoogle Scholar
  54. 54.
    Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J (2005) Phylogeny and molecular identification of Vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71(9):5107–5115. doi: 10.1128/aem.71.9.5107-5115.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Toren A, Landau L, Kushmaro A, Loya Y, Rosenberg E (1998) Effect of temperature on adhesion of Vibrio strain AK-1 to Oculina patagonica and on coral bleaching. Appl Environ Microbiol 64(4):1379–1384PubMedCentralPubMedGoogle Scholar
  56. 56.
    Wagner D, Mielbrecht E, van Woesik R (2008) Application of landscape ecology to spatial variance of water-quality parameters along the Florida Keys reef tract. Bull Mar Sci 83(3):553–569Google Scholar
  57. 57.
    Weil E, Smith G, Gil-Agudelo DL (2006) Status and progress in coral reef disease research. Dis Aquat Org 69(1):1PubMedCrossRefGoogle Scholar
  58. 58.
    Wolf AT, Nugues MM (2012) Predation on coral settlers by the corallivorous fireworm Hermodice carunculata. Coral Reefs Online. ISSN 1432-0975. doi: 10.1007/s00338-00012-00969-x.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ana Paula B. Moreira
    • 1
  • Luciane A. Chimetto Tonon
    • 1
  • Cecilia do Valle P. Pereira
    • 1
  • Nelson AlvesJr.
    • 1
  • Gilberto M. Amado-Filho
    • 2
  • Ronaldo Bastos Francini-Filho
    • 3
  • Rodolfo Paranhos
    • 4
  • Fabiano L. Thompson
    • 1
  1. 1.Laboratory of Microbiology, Institute of BiologyFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Botanical Garden Research Institute (JBRJ)Rio de JaneiroBrazil
  3. 3.Department of Environment and EngineeringFederal University of Paraíba (UFPB)Rio TintoBrazil
  4. 4.Laboratory of Hydrobiology, Institute of BiologyFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations