Advertisement

Current Microbiology

, Volume 67, Issue 5, pp 614–623 | Cite as

A Comparison of Effects of Broad-Spectrum Antibiotics and Biosurfactants on Established Bacterial Biofilms

  • Gerry A. Quinn
  • Aaron P. Maloy
  • Malik M. Banat
  • Ibrahim M. Banat
Article

Abstract

Current antibiofilm solutions based on planktonic bacterial physiology have limited efficacy in clinical and occasionally environmental settings. This has prompted a search for suitable alternatives to conventional therapies. This study compares the inhibitory properties of two biological surfactants (rhamnolipids and a plant-derived surfactant) against a selection of broad-spectrum antibiotics (ampicillin, chloramphenicol and kanamycin). Testing was carried out on a range of bacterial physiologies from planktonic and mixed bacterial biofilms. Rhamnolipids (Rhs) have been extensively characterised for their role in the development of biofilms and inhibition of planktonic bacteria. However, there are limited direct comparisons with antimicrobial substances on established biofilms comprising single or mixed bacterial strains. Baseline measurements of inhibitory activity using planktonic bacterial assays established that broad-spectrum antibiotics were 500 times more effective at inhibiting bacterial growth than either Rhs or plant surfactants. Conversely, Rhs and plant biosurfactants reduced biofilm biomass of established single bacterial biofilms by 74–88 and 74–98 %, respectively. Only kanamycin showed activity against biofilms of Bacillus subtilis and Staphylococcus aureus. Broad-spectrum antibiotics were also ineffective against a complex biofilm of marine bacteria; however, Rhs and plant biosurfactants reduced biofilm biomass by 69 and 42 %, respectively. These data suggest that Rhs and plant-derived surfactants may have an important role in the inhibition of complex biofilms.

Keywords

Test Substance Biosurfactants Surfactin Minimum Bactericidal Concentration Rhamnolipids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge Hendrik Fuß and Gowrishankar Muthukrishnan for their expert technical advice and John Slater and Brian Carney for providing funding. This work was supported partly by the Higher Education Authority (Ireland) (Grant No. AI060753).

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

284_2013_412_MOESM1_ESM.doc (64 kb)
Supplementary material 1 (DOC 63 kb)

References

  1. 1.
    Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66(8):3262–3268PubMedCrossRefGoogle Scholar
  2. 2.
    Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55(3):541–555PubMedCrossRefGoogle Scholar
  3. 3.
    Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444PubMedCrossRefGoogle Scholar
  4. 4.
    Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek 85(1):1–8PubMedCrossRefGoogle Scholar
  5. 5.
    Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57(5):1210–1223PubMedCrossRefGoogle Scholar
  6. 6.
    Cavalcante TT, Matias A, da Rocha B, Carneiro VA, Arruda FVS, do Nascimento ASF, Sa NC, do Nascimento KS, Cavada BS, Teixeira EH (2011) Effect of lectins from Diocleinae subtribe against oral Streptococci. Molecules 16(5):3530–3543PubMedCrossRefGoogle Scholar
  7. 7.
    Chen ML, Penfold J, Thomas RK, Smyth TJ, Perfumo A, Marchant R, Banat IM, Stevenson P, Parry A, Tucker I, Grillo I (2010) Mixing behavior of the biosurfactant, rhamnolipid, with a conventional anionic surfactant, sodium dodecyl benzene sulfonate. Langmuir 26(23):17958–17968PubMedCrossRefGoogle Scholar
  8. 8.
    Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238(1):86–95PubMedCrossRefGoogle Scholar
  9. 9.
    Dusane DH, Dam S, Nancharaiah YV, Kumar AR, Venugopalan VP, Zinjarde SS (2012) Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. Aquat Biosyst 8(1):17PubMedCrossRefGoogle Scholar
  10. 10.
    Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP (2010) Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf B 81(1):242–248CrossRefGoogle Scholar
  11. 11.
    Dusane DH, Zinjarde SS, Venugopalan VP, McLean RJ, Weber MM, Rahman PK (2010) Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 27:159–184PubMedCrossRefGoogle Scholar
  12. 12.
    Epstein AK, Pokroy B, Seminara A, Aizenberg J (2011) Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc Natl Acad Sci USA 108(3):995–1000PubMedCrossRefGoogle Scholar
  13. 13.
    Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81(3):316–322PubMedCrossRefGoogle Scholar
  14. 14.
    Hill KE, Malic S, McKee R, Rennison T, Harding KG, Williams DW, Thomas DW (2010) An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. J Antimicrob Chemother 65(6):1195–1206PubMedCrossRefGoogle Scholar
  15. 15.
    Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436(7054):1171–1175PubMedCrossRefGoogle Scholar
  16. 16.
    Irie Y, O’Toole GA, Yuk MH (2005) Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol Lett 250(2):237–243PubMedCrossRefGoogle Scholar
  17. 17.
    Ito S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C 12, C 13 and C 14 fractions). J Antibiot (Tokyo) 24(12):855–859CrossRefGoogle Scholar
  18. 18.
    Janek T, Lukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24PubMedCrossRefGoogle Scholar
  19. 19.
    Kaplan JB (2011) Antibiotic-induced biofilm formation. Int J Artif Organs 34(9):737–751PubMedCrossRefGoogle Scholar
  20. 20.
    Kathju S, Nistico L, Hall-Stoodley L, Post JC, Ehrlich GD, Stoodley P (2009) Chronic surgical site infection due to suture-associated polymicrobial biofilm. Surg Infect (Larchmt) 10(5):457–461CrossRefGoogle Scholar
  21. 21.
    Lehrer RI, Rosenman M, Harwig SS, Jackson R, Eisenhauer P (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods 137(2):167–173PubMedCrossRefGoogle Scholar
  22. 22.
    Lotfabad TB, Shahcheraghi F, Shooraj F (2013) Assessment of antibacterial capability of rhamnolipids produced by two indigenous Pseudomonas aeruginosa strains. Jundishapur J Microbiol 6(1):29–35CrossRefGoogle Scholar
  23. 23.
    Lourenco A, Machado H, Brito L (2011) Biofilms of Listeria monocytogenes produced at 12 degrees C either in pure culture or in co-culture with Pseudomonas aeruginosa showed reduced susceptibility to sanitizers. J Food Sci 76(2):M143–M148PubMedCrossRefGoogle Scholar
  24. 24.
    May TB, Shinabarger D, Maharaj R, Kato J, Chu L, DeVault JD, Roychoudhury S, Zielinski NA, Berry A, Rothmel RK et al (1991) Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev 4(2):191–206PubMedGoogle Scholar
  25. 25.
    McLaughlin RA, Hoogewerf AJ (2006) Interleukin-1beta-induced growth enhancement of Staphylococcus aureus occurs in biofilm but not planktonic cultures. Microb Pathog 41(2–3):67–79PubMedCrossRefGoogle Scholar
  26. 26.
    Mikkelsen H, Duck Z, Lilley KS, Welch M (2007) Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J Bacteriol 189(6):2411–2416PubMedCrossRefGoogle Scholar
  27. 27.
    Mireles JR 2nd, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183(20):5848–5854PubMedCrossRefGoogle Scholar
  28. 28.
    Nickel JC, Costerton JW (1993) Bacterial localization in antibiotic-refractory chronic bacterial prostatitis. Prostate 23(2):107–114PubMedCrossRefGoogle Scholar
  29. 29.
    Nworu C, Esimon C (2006) Comparative evaluation of three in vitro techniques in the interaction of ampicillin and ciprofloxacin against Staphylococcus aureus and Escherichia coli. Trop J Pharm Res 5(2):605–611Google Scholar
  30. 30.
    Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66(2):86–92PubMedGoogle Scholar
  31. 31.
    Pengov A, Ceru S (2003) Antimicrobial drug susceptibility of Staphylococcus aureus strains isolated from bovine and ovine mammary glands. J Dairy Sci 86(10):3157–3163PubMedCrossRefGoogle Scholar
  32. 32.
    Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72(1):132–138PubMedCrossRefGoogle Scholar
  33. 33.
    Quinn GA, Maloy AP, McClean S, Carney B, Slater JW (2012) Lipopeptide biosurfactants from Paenibacillus polymyxa inhibit single and mixed species biofilms. Biofouling 28(10):1151–1166PubMedCrossRefGoogle Scholar
  34. 34.
    Quinn GA, Tarwater PM, Cole AM (2009) Subversion of interleukin-1-mediated host defence by a nasal carrier strain of Staphylococcus aureus. Immunology 128(1 Suppl):e222–e229PubMedCrossRefGoogle Scholar
  35. 35.
    Rahman KS, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18(6):1277–1281PubMedCrossRefGoogle Scholar
  36. 36.
    Rakita RM, Jacques-Palaz K, Murray BE (1994) Intracellular activity of azithromycin against bacterial enteric pathogens. Antimicrob Agents Chemother 38(9):1915–1921PubMedCrossRefGoogle Scholar
  37. 37.
    Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618PubMedCrossRefGoogle Scholar
  38. 38.
    Rodrigues L, Banat IM, Teixeira J, Oliveira R (2007) Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses. J Biomed Mater Res B 81(2):358–370Google Scholar
  39. 39.
    Rodrigues LR, Banat IM, van der Mei HC, Teixeira JA, Oliveira R (2006) Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol 100(3):470–480PubMedCrossRefGoogle Scholar
  40. 40.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  41. 41.
    Seth AK, Geringer MR, Hong SJ, Leung KP, Galiano RD, Mustoe TA (2012) Comparative analysis of single-species and polybacterial wound biofilms using a quantitative, in vivo, rabbit ear model. PLoS ONE 7(8):e42897PubMedCrossRefGoogle Scholar
  42. 42.
    Shakir A, Elbadawey MR, Shields RC, Jakubovics NS, Burgess JG (2012) Removal of biofilms from tracheoesophageal speech valves using a novel marine microbial deoxyribonuclease. Otolaryngol Head Neck Surg. doi: 10.1177/0194599812442867 PubMedGoogle Scholar
  43. 43.
    Stewart CR, Muthye V, Cianciotto NP (2012) Legionella pneumophila persists within biofilms formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under dynamic flow conditions. PLoS ONE 7(11):e50560PubMedCrossRefGoogle Scholar
  44. 44.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267PubMedCrossRefGoogle Scholar
  45. 45.
    Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4(10):e7401PubMedCrossRefGoogle Scholar
  46. 46.
    Wingender J, Flemming HC (2011) Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214(6):417–423PubMedCrossRefGoogle Scholar
  47. 47.
    Wolcott RD, Gontcharova V, Sun Y, Dowd SE (2009) Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and titanium amplicon pyrosequencing and metagenomic approaches. BMC Microbiol 9:226PubMedCrossRefGoogle Scholar
  48. 48.
    Wolyniak EA, Hargreaves BR, Jellison KL (2010) Seasonal retention and release of Cryptosporidium parvum oocysts by environmental biofilms in the laboratory. Appl Environ Microbiol 76(4):1021–1027PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gerry A. Quinn
    • 1
  • Aaron P. Maloy
    • 1
  • Malik M. Banat
    • 3
  • Ibrahim M. Banat
    • 2
  1. 1.Centre of Applied Marine Biotechnology (CAMBio)Letterkenny Institute of Technology (LYIT)LetterkennyIreland
  2. 2.Biomedical Sciences Research InstituteUniversity of UlsterColeraineNorthern Ireland, UK
  3. 3.University Hospital North Staffordshire (UHNS), Medical Division City General SiteStoke-on-TrentUK

Personalised recommendations