Current Microbiology

, Volume 66, Issue 6, pp 599–605 | Cite as

Rhizobium halotolerans sp. nov., Isolated from Chloroethylenes Contaminated Soil

  • Eboa Adolf Diange
  • Sang-Seob Lee


The strain designated as AB21T was isolated from chloroethylenes contaminated soil. Cells are gram-negative, aerobic, non-spore-forming, and motile rods. Phylogenetic analysis based on 16S rRNA gene sequence showed that it belonged to the genus Rhizobium, and was closely related to Rhizobium sullae IS 123T (97.4 %), Rhizobium yanglingense SH 22623T (97.2 %), Rhizobium gallicum R 602spT (97.1 %), Rhizobium alamii GBV 016T (97.0 %), and Rhizobium monogolense USDA 1844T (97.0 %). It showed less than 97 % identity with the remaining Rhizobium species. This novel isolate grew optimally at 25–37 °C (optimum, 30 °C) and pH 6–9 (optimum, pH 8.0). It grew in the presence of 0–4 % (w/v) NaCl, tolerating a 4 % (w/v) NaCl. DNA–DNA hybridization experiment shows less than 53 % binding with closely related Rhizobium. Predominant quinone is ubiquinone (Q-10). The major fatty acids were summed feature 8 (composed of C18:1 ω7c/C18:1 ω6c), C19:0 cyclo ω8c, and C16:0. The G+C molar content is 62.5 mol%. Based on the polyphasic analysis, strain AB21T is referred to be a novel species of the genus Rhizobium for which the name Rhizobium halotolerans sp. nov. is proposed. The type strain is AB21T (=KEMC 224-056T = JCM 17536T).


Rhizobium Major Fatty Acid Chloroethylenes Molar Content Itaconate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Kyonggi University Research Assistant Fellowship 2013.

Supplementary material

284_2013_313_MOESM1_ESM.doc (13.3 mb)
Supplementary material 1 (DOC 13664 kb)


  1. 1.
    Frank B (1989) ÜberdiePilzsymbiosederLeguminosen. Berichte der Deutschen BotanischenGesellschaft 7:332–346Google Scholar
  2. 2.
    Holt GH, Krieg NR, Sneath PH et al (1994) Bergy’s Manual of Systematic Bacteriology (Ninth edition), pp 78, 95, 112, 120Google Scholar
  3. 3.
    Young JM, Kuykendall LD, Martinez RE et al (2001) A revision of Rhizobium,with an emended description of the genus,and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R.rhizogenes, R.rubi, R.undicola and R.vitis. Int J Syst Evol Microbiol 51:89–103PubMedCrossRefGoogle Scholar
  4. 4.
    Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139CrossRefGoogle Scholar
  5. 5.
    Moran MJ, Zogorski JS, Squillace PJ (2007) Chlorinated solvents in groundwater of the United States. Environ Sci Technol 41:74–81PubMedCrossRefGoogle Scholar
  6. 6.
    BCCM™/LMG (2011) Culture Medium 203 Bacteria Catalogue Accessed 18 Jan 2012
  7. 7.
    Doetsch RN (1981) Determinative methods of light microscopy. Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 21–33Google Scholar
  8. 8.
    Marmur J (1961) A Procedure of deoxyribonucleic acid from micro-organism. J Mol Biol 3:208–218CrossRefGoogle Scholar
  9. 9.
    Weisberg WG, Barns SM, Pelletier DA et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703Google Scholar
  10. 10.
    Gaunt MW, Turner SL, Rigottier-Gois L (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048PubMedCrossRefGoogle Scholar
  11. 11.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  12. 12.
    Thompson JD, Gibson TJ, Plewniak F et al (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  13. 13.
    Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. 14.
    Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Bio Evol. doi: 10.1093/molbev/msr121 Google Scholar
  15. 15.
    Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  16. 16.
    Graham PH, Sadowsky MJ, Keyser HH et al (1991) Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J syst bacteriol. doi: 0020-7713/91/0405582-06 PubMedGoogle Scholar
  17. 17.
    Lin DX, Chen WF, Wang FQ et al (2009) Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol 59:1919–1923PubMedCrossRefGoogle Scholar
  18. 18.
    Martinez-Romero E, Segovia L, Mercante FM et al (1991) Rhizobium tropici, a novel species modulating Phaseolus vulgar in L.Beans and Leucaena sp. trees. Int J syst Bacteriol. doi: 0020-7713/91/030417-10 PubMedGoogle Scholar
  19. 19.
    Freiberg C, Broughton WJ, Perret X et al (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401PubMedCrossRefGoogle Scholar
  20. 20.
    Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedGoogle Scholar
  21. 21.
    Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  22. 22.
    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc., NewarkGoogle Scholar
  23. 23.
    Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  24. 24.
    Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  25. 25.
    Berge O, Lodhi A, Brandelet G et al (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59:367–372PubMedCrossRefGoogle Scholar
  26. 26.
    Heyrman J, Verbeeren J, Peter Schumann P et al (2005) Six novel Arthrobacter species isolated from deteriorated mural paintings. Int J Syst Evol Microbiol 55:1457–1464PubMedCrossRefGoogle Scholar
  27. 27.
    Keddie RM, Collins MD, Jones D (1986) Genus Arthrobacter Conn and Dimmick 1947. In: Sneath PH, Mair N, Sharpe, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1288–1301Google Scholar
  28. 28.
    Zhang X, Li B, Wang H et al (2011) Rhizobium petrolearium sp.nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 62:1871–1876PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Natural Science, Department of Bio-engineeringKyonggi UniversitySuwonRepublic of Korea
  2. 2.Division of Natural Science, Department of Life ScienceKyonggi UniversitySuwonRepublic of Korea

Personalised recommendations