Current Microbiology

, Volume 66, Issue 5, pp 456–461 | Cite as

Magnetic Resonance Imaging of Mass Transport and Structure Inside a Phototrophic Biofilm

  • Baheerathan Ramanan
  • William M. Holmes
  • William T. Sloan
  • Vernon R. Phoenix


The aim of this study was to utilize magnetic resonance imaging (MRI) to image structural heterogeneity and mass transport inside a biofilm which was too thick for photon based imaging. MRI was used to map water diffusion and image the transport of the paramagnetically tagged macromolecule, Gd-DTPA, inside a 2.5 mm thick cyanobacterial biofilm. The structural heterogeneity of the biofilm was imaged at resolutions down to 22 × 22 μm, enabling the impact of biofilm architecture on the mass transport of both water and Gd-DTPA to be investigated. Higher density areas of the biofilm correlated with areas exhibiting lower relative water diffusion coefficients and slower transport of Gd-DTPA, highlighting the impact of biofilm structure on mass transport phenomena. This approach has potential for shedding light on heterogeneous mass transport of a range of molecular mass molecules in biofilms.


DTPA Water Diffusion Phormidium High Solid Content Radio Frequency Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by a Lord Kelvin and Adam Smith Scholarship, University of Glasgow and funding from the Engineering and Physical Sciences Research Council (EP/G028443/1). We thank Jim Mullen for his assistance with RF coil building and MRI experiments.

Supplementary material

284_2012_292_MOESM1_ESM.docx (515 kb)
Supplementary material 1 (DOCX 514 kb)


  1. 1.
    Barranguet C, van Beusekom SAM, Veuger B, Neu TR, Manders EMM, Sinke JJ, Admiraal W (2004) Studying undisturbed autotrophic biofilms: still a technical challenge. Aquat Microb Ecol 34(1):1–9. doi: 10.3354/ame034001 CrossRefGoogle Scholar
  2. 2.
    Bartacek J, Vergeldt FJ, Gerkema E, Jenicek P, Lens PNL, Van As H (2009) Magnetic resonance microscopy of iron transport in methanogenic granules. J Magn Reson 200(2):303–312. doi: 10.1016/j.jmr.2009.07.013 PubMedCrossRefGoogle Scholar
  3. 3.
    Batstone DJ, Keller J (2001) Variation of bulk properties of anaerobic granules with wastewater type. Water Res 35(7):1723–1729. doi: 10.1016/s0043-1354(00)00446-2 PubMedCrossRefGoogle Scholar
  4. 4.
    Bishop PL, Gibbs JT, Cunningham BE (1997) Relationship between concentration and hydrodynamic boundary layers over biofilms. Environ Technol 18(4):375–385. doi: 10.1080/09593331808616551 CrossRefGoogle Scholar
  5. 5.
    Buffiere P, Steyer JP, Fonade C, Moletta R (1995) Comprehensive modeling of methanogenic biofilms in fluidized-bed systems: mass-transfer limitations and multisubstrate aspects. Biotechnol Bioeng 48(6):725–736. doi: 10.1002/bit.260480622 PubMedCrossRefGoogle Scholar
  6. 6.
    Callaghan PT (1993) Principles of nuclear magnetic resonance microscopy. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    deBeer D, Stoodley P, Lewandowski Z (1997) Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol Bioeng 53(2):151–158. doi: 10.1002/(sici)1097-0290(19970120)53:2<151:aid-bit4>;2-n CrossRefGoogle Scholar
  8. 8.
    Debeer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass-transport. Biotechnol Bioeng 43(11):1131–1138. doi: 10.1002/bit.260431118 CrossRefGoogle Scholar
  9. 9.
    Gordon MJ, Chu KC, Margaritis A, Martin AJ, Ethier CR, Rutt BK (1999) Measurement of Gd-DTPA diffusion through PVA hydrogel using a novel magnetic resonance imaging method. Biotechnol Bioeng 65(4):459–467. doi: 10.1002/(sici)1097-0290(19991120)65:4<459:aid-bit10>;2-o PubMedCrossRefGoogle Scholar
  10. 10.
    McLean JS, Ona ON, Majors PD (2008) Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy. ISME J 2(2):121–131. doi: 10.1038/ismej.2007.107 PubMedCrossRefGoogle Scholar
  11. 11.
    Paramonova E, De Jong ED, Krom BP, Van der Mei HC, Busscher HJ, Sharma PK (2007) Low-load compression testing: a novel way of measuring Biofilm thickness. Appl Environ Microbiol 73(21):7023–7028. doi: 10.1128/aem.00935-07 PubMedCrossRefGoogle Scholar
  12. 12.
    Phoenix VR, Holmes WM (2008) Magnetic resonance imaging of structure, diffusivity, and copper immobilization in a phototrophic biofilm. Appl Environ Microbiol 74(15):4934–4943. doi: 10.1128/aem.02783-07 PubMedCrossRefGoogle Scholar
  13. 13.
    Phoenix VR, Holmes WM, Ramanan B (2008) Magnetic resonance imaging (MRI) of heavy-metal transport and fate in an artificial biofilm. Miner Mag 72(1):483–486. doi: 10.1180/minmag.2008.072.1.483 CrossRefGoogle Scholar
  14. 14.
    Ramanan B, Holmes WM, Sloan WT, Phoenix VR (2010) Application of paramagnetically tagged molecules for magnetic resonance imaging of biofilm mass transport Processes. Appl Environ Microbiol 76(12):4027–4036. doi: 10.1128/aem.03016-09 PubMedCrossRefGoogle Scholar
  15. 15.
    Renslow RS, Majors PD, McLean JS, Fredrickson JK, Ahmed B, Beyenal H (2010) In situ effective diffusion coefficient profiles in live biofilms using pulsed-field gradient nuclear magnetic resonance. Biotechnol Bioeng 106(6):928–937. doi: 10.1002/bit.22755 PubMedCrossRefGoogle Scholar
  16. 16.
    Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111 (MAR):1–61Google Scholar
  17. 17.
    Roeselers G, van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20(3):227–235. doi: 10.1007/s10811-007-9223-2 PubMedCrossRefGoogle Scholar
  18. 18.
    Sirlin CB, Vera DR, Corbeil JA, Caballero MB, Buxton RB, Mattrey RF (2004) Gadolinium-DTPA-dextran: a macromolecular MR blood pool contrast agent. Acad Radiol 11(12):1361–1369. doi: 10.1016/j.acra.2004.10.048 PubMedCrossRefGoogle Scholar
  19. 19.
    Stewart PS (1998) A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol Bioeng 59(3):261–272. doi: 10.1002/(sici)1097-0290(19980805)59:3<261:aid-bit1>;2-9 PubMedCrossRefGoogle Scholar
  20. 20.
    Wieland A, de Beer D, Damgaard LR, Kuhl M, van Dusschote D, Van As H (2001) Fine-scale measurement of diffusivity in a microbial mat with nuclear magnetic resonance imaging. Limnol Oceanogr 46(2):248–259CrossRefGoogle Scholar
  21. 21.
    Zhang TC, Bishop PL (1994) Evaluation of tortuosity factors and effective diffusivities in biofilms. Water Res 28(11):2279–2287. doi: 10.1016/0043-1354(94)90043-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Baheerathan Ramanan
    • 1
  • William M. Holmes
    • 2
  • William T. Sloan
    • 3
  • Vernon R. Phoenix
    • 1
  1. 1.Geographical and Earth SciencesUniversity of GlasgowGlasgowUnited Kingdom
  2. 2.Institute of Neuroscience and PsychologyUniversity of Glasgow, GEMRICGlasgowUnited Kingdom
  3. 3.EngineeringUniversity of GlasgowGlasgowUnited Kingdom

Personalised recommendations