Advertisement

Current Microbiology

, Volume 65, Issue 6, pp 742–751 | Cite as

A Model of Proteolysis and Amino Acid Biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in Whey

  • Enuo Liu
  • Huajun Zheng
  • Pei Hao
  • Tomonobu Konno
  • Yao Yu
  • Hisae Kume
  • Munehiro Oda
  • Zai-Si JiEmail author
Article

Abstract

Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038) is a bacterium that is used as a starter for dairy products by Meiji Co., Ltd of Japan. Culturing L. bulgaricus 2038 with whey as the sole nitrogen source results in a shorter lag phase than other milk proteins under the same conditions (carbon source, minerals, and vitamins). Microarray results of gene expression revealed characteristics of amino acid anabolism with whey as the nitrogen source and established a model of proteolysis and amino acid biosynthesis for L. bulgaricus. Whey peptides and free amino acids are readily metabolized, enabling rapid entry into the logarithmic growth phase. The oligopeptide transport system is the primary pathway for obtaining amino acids. Amino acid biosynthesis maintains the balance between amino acids required for cell growth and the amount obtained from environment. The interconversion of amino acids is also important for L. bulgaricus 2038 growth.

Keywords

Lactic Acid Bacterium Amino Acid Biosynthesis Glycolytic Intermediate Amino Acid Permease Lactobacillus Bulgaricus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Dr. Huasheng Xiao of the Shanghai Biochip Center for his assistance in the microarray experiments.

Supplementary material

284_2012_214_MOESM1_ESM.pdf (48 kb)
Supplementary material 1 (PDF 48 kb)
284_2012_214_MOESM2_ESM.pdf (30 kb)
Supplementary material 2 (PDF 29 kb)
284_2012_214_MOESM3_ESM.pdf (36 kb)
Supplementary material 3 (PDF 35 kb)
284_2012_214_MOESM4_ESM.pdf (11 kb)
Supplementary material 4 (PDF 11 kb)
284_2012_214_MOESM5_ESM.pdf (51 kb)
Supplementary material 5 (PDF 50 kb)

References

  1. 1.
    Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76(1–4):217–246PubMedCrossRefGoogle Scholar
  2. 2.
    Detmers FJ, Lanfermeijer FC, Abele R, Jack RW, Tampe R, Konings WN, Poolman B (2000) Combinatorial peptide libraries reveal the ligand-binding mechanism of the oligopeptide receptor OppA of Lactococcus lactis. Proc Natl Acad Sci USA 97(23):12487–12492. doi: 10.1073/pnas.220308797 PubMedCrossRefGoogle Scholar
  3. 3.
    Flynn LM, Williams VB, O’Dell BL, Hogan AG (1951) Medium for assay of vitamins with lactic acid bacteria. Anal Biochem 23:180–185Google Scholar
  4. 4.
    Gordon WG, Ziegler J (1955) Amino acid composition of crystalline alpha-lactalbumin. Arch Biochem Biophys 57(1):80–86PubMedCrossRefGoogle Scholar
  5. 5.
    Hao P, Zheng H, Yu Y, Ding G, Gu W, Chen S, Yu Z, Ren S, Oda M, Konno T, Wang S, Li X, Ji ZS, Zhao G (2011) Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production. PLoS ONE 6(1):e15964. doi: 10.1371/journal.pone.0015964 PubMedCrossRefGoogle Scholar
  6. 6.
    Klein JR, Schick J, Henrich B, Plapp R (1997) Lactobacillus delbrueckii subsp. lactis DSM7290 pepG gene encodes a novel cysteine aminopeptidase. Microbiology 143(Pt 2):527–537PubMedCrossRefGoogle Scholar
  7. 7.
    Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70(2–4):187–221PubMedCrossRefGoogle Scholar
  8. 8.
    Majumdar D, Avissar YJ, Wyche JH (1991) Simultaneous and rapid isolation of bacterial and eukaryotic DNA and RNA: a new approach for isolating DNA. Biotechniques 11(1):94–101PubMedGoogle Scholar
  9. 9.
    Morel F, Frot-Coutaz J, Aubel D, Portalier R, Atlan D (1999) Characterization of a prolidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 with an unusual regulation of biosynthesis. Microbiology 145(Pt 2):437–446PubMedCrossRefGoogle Scholar
  10. 10.
    Mucchetti G, Locci F, Massara P, Vitale R, Nevlanl E (2002) Production of pyroglutamin acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses. J Dairy Sci 85:2489–2496PubMedCrossRefGoogle Scholar
  11. 11.
    Nielsen SS (2002) Plasmin system and microbial proteases in milk: characteristics, roles, and relationship. J Agric Food Chem 50(22):6628–6634PubMedCrossRefGoogle Scholar
  12. 12.
    Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM (2005) Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol 16(2):204–211. doi: 10.1016/j.copbio.2005.02.003 PubMedCrossRefGoogle Scholar
  13. 13.
    Shahani KM, Herper WJ, Jensen RG, Parry RM Jr, Zittle CA (1973) Enzymes in bovine milk: a review. J Dairy Sci 56(5):531–543PubMedCrossRefGoogle Scholar
  14. 14.
    Sieuwerts S, Molenaar D, van Hijum SA, Beerthuyzen M, Stevens MJ, Janssen PW, Ingham CJ, de Bok FA, de Vos WM, van Hylckama Vlieg JE (2010) Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl Environ Microbiol 76(23):7775–7784. doi: 10.1128/AEM.01122-10 PubMedCrossRefGoogle Scholar
  15. 15.
    van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessieres P, Weissenbach J, Ehrlich SD, Maguin E (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103(24):9274–9279. doi: 10.1073/pnas.0603024103 PubMedCrossRefGoogle Scholar
  16. 16.
    Zheng H-J, Wang B-F, Zhang X-L, Han H, Lu G, Jin L, Pu S-Y, Hu Q-P, Zhu G-F, Wang S-Y, Oda M, Konno T, Fu G, Ji Z-S, Zhao G-P (2008) The complete genome sequence of Lactobacillus delbrueckii subsp. bulgaricus 2038. Trends Cell Mol Biol 3:15–30Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Enuo Liu
    • 1
    • 4
  • Huajun Zheng
    • 2
    • 5
  • Pei Hao
    • 3
  • Tomonobu Konno
    • 4
  • Yao Yu
    • 3
  • Hisae Kume
    • 4
  • Munehiro Oda
    • 1
  • Zai-Si Ji
    • 4
    • 5
    Email author
  1. 1.Graduate School of Bioresource SciencesNihon UniversityFujisawaJapan
  2. 2.Shanghai-MOST Key Laboratory of Health and Disease GenomicsChinese National Human Genome Center at ShanghaiShanghaiChina
  3. 3.Key Laboratory of Systems Biology/Key Laboratory of Synthetic Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  4. 4.Division of Research and DevelopmentMeiji Co., Ltd.OdawaraJapan
  5. 5.WHO Collaborating Centre for Research in Human ReproductionShanghaiChina

Personalised recommendations