Current Microbiology

, Volume 65, Issue 2, pp 150–155 | Cite as

Carotenoids in Rhodoplanes Species: Variation of Compositions and Substrate Specificity of Predicted Carotenogenesis Enzymes

  • Shinichi Takaichi
  • Ch. Sasikala
  • Ch. V. Ramana
  • Keiko Okamura
  • Akira Hiraishi
Article

Abstract

Phototrophic bacteria necessarily contain carotenoids for photosynthesis, and accumulate unusual carotenoids in some cases. The carotenoids in all established species of Rhodoplanes (Rpl.), a representative of phototrophic genera, were identified using spectroscopic methods. The major carotenoid was spirilloxanthin in Rpl. roseus and Rpl. serenus, and rhodopin in “Rpl. cryptolactis”. Rpl. elegans contained rhodopin, anhydrorhodovibrin, and spirilloxanthin. Rpl. pokkaliisoli contained not only rhodopin but also 1,1′-dihydroxylycopene and 3,4,3′,4′-tetrahydrospirilloxanthin. These variations in carotenoid composition suggested that Rpl. roseus and Rpl. serenus had normal substrate specificity of the carotenogenesis enzymes of CrtC (acyclic carotene 1,2-hydratase), CrtD (acyclic carotenoid 3,4-desaturase), and CrtF (acyclic 1-hydroxycarotenoid methyltransferase). On the other hand, CrtC of Rpl. elegans, CrtD of “Rpl. cryptolactis”, and CrtC, CrtD, and CrtF of Rpl. pokkaliisoli might have different characteristics from the usual activity of these normal enzymes in the normal spirilloxanthin pathway. These results suggest that the variation of carotenoids among the species of Rhodoplanes results from modified substrate specificity of the carotenogenesis enzymes involved.

References

  1. 1.
    Eimhjellen KE, Steensland H, Traetteberg J (1967) A Thiococcus sp. nov. gen., its pigments and internal membrane system. Arch Mikrobiol 59:82–92PubMedCrossRefGoogle Scholar
  2. 2.
    Hiraishi A (1997) Transfer of the bacteriochlorophyll b-containing phototrophic bacteria Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis to the genus Blastochloris gen. nov. Int J Syst Bacteriol 47:217–219PubMedCrossRefGoogle Scholar
  3. 3.
    Hiraishi A, Imhoff JF (2005) Genus XVII. Rhodoplanes Hiraishi and Ueda 1994. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, second edition, vol. 2. The proteobacteria, part C, the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, New York, pp 545–549Google Scholar
  4. 4.
    Hiraishi A, Ueda Y (1994) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 44:665–673CrossRefGoogle Scholar
  5. 5.
    Imhoff JF (2005) Genus VII. Blastochloris Hiraishi 1997. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, second edition, vol. 2. The proteobacteria, part C, the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, New York, pp 506–509Google Scholar
  6. 6.
    Imhoff JF, Pfennig N (2001) Thioflavicoccus mobilis gen. nov., sp. nov., a novel purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Evol Microbiol 51:105–110PubMedGoogle Scholar
  7. 7.
    Janssen PH, Harfoot CG (1991) Rhodopseudomonas rosea sp. nov., a new purple nonsulfur bacterium. Int J Syst Bacteriol 41:26–30CrossRefGoogle Scholar
  8. 8.
    Komori M, Ghosh R, Takaichi S, Hu Y, Mizoguchi T, Koyama Y, Kuki M (1998) A null lesion in the rhodopin 3,4-desaturase of Rhodospirillum rubrum unmasks a cryptic branch of the carotenoid biosynthetic pathway. Biochemistry 37:8987–8994PubMedCrossRefGoogle Scholar
  9. 9.
    Kovács ÁT, Rakhely G, Kovács KL (2003) Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Appl Environ Microbiol 69:3093–3102PubMedCrossRefGoogle Scholar
  10. 10.
    Lakshmi KVNS, Sasikala Ch, Ramana ChV (2009) Rhodoplanes pokkaliisoli sp. nov., a phototrophic alphaproteobacterium isolated from a waterlogged brackish paddy soil. Int J Syst Evol Microbiol 59:2153–2157PubMedCrossRefGoogle Scholar
  11. 11.
    Malhotra HG, Britton G, Goodwin TW (1970) A novel series of 1,2-dihydro carotenoids. Int J Vit Res 40:315–322Google Scholar
  12. 12.
    Okamura K, Hisada T, Hiraishi A (2007) Characterization of thermotolerant purple nonsulfur bacteria isolated from hot-spring Chloroflexus mats and the reclassification of “Rhodopseudomonas cryptolactis” Stadtwald-Demchick et al. 1990 as Rhodoplanes cryptolactis nom. rev., comb. nov. J Gen Appl Microbiol 53:357–361PubMedCrossRefGoogle Scholar
  13. 13.
    Okamura K, Kanbe T, Hiraishi A (2009) Rhodoplanes serenus sp. nov., a purple non-sulfur bacterium isolated from pond water. Int J Syst Evol Microbiol 59:531–535PubMedCrossRefGoogle Scholar
  14. 14.
    Pfennig N, Lünsforf H, Süling J, Imhoff JF (1997) Rhodospira trueperi gen. nov., spec. nov., a new phototrophic proteobacterium of the alpha group. Arch Microbiol 168:39–45PubMedCrossRefGoogle Scholar
  15. 15.
    Ramana VV, Kapoor S, Shobha E, Ramprasad EVV, Sasikala Ch, Ramana ChV (2011) Blastochloris gulmargensis sp. nov., isolated from an epilithic phototrophic biofilm. Int J Syst Evol Microbiol 61:1811–1816PubMedCrossRefGoogle Scholar
  16. 16.
    Schmidt K (1978) Biosynthesis of carotenoids. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York, pp 729–750Google Scholar
  17. 17.
    Stadtwald-Demchick R, Turner FR, Gest H (1990) Rhodopseudomonas cryptolactis, sp. nov., a new thermotolerant species of budding phototrophic purple bacteria. FEMS Lett 71:117–122CrossRefGoogle Scholar
  18. 18.
    Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer, Dordrecht, pp 39–69Google Scholar
  19. 19.
    Takaichi S (2009) Distribution and biosynthesis of carotenoids. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Dordrecht, pp 97–117CrossRefGoogle Scholar
  20. 20.
    Takaichi S, Shimada K (1992) Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 213:374–385CrossRefGoogle Scholar
  21. 21.
    Takaichi S, Jung DO, Madigan MT (2001) Accumulation of unusual carotenoids in the spheroidene pathway, demethylspheroidene and demethylspheroidenone, in an alkaliphilic purple nonsufur bacterium Rhodobaca bogoriensis. Photosynth Res 67:207–214PubMedCrossRefGoogle Scholar
  22. 22.
    Takaichi S, Maoka T, Sasikala Ch, Ramana ChV, Shimada K (2011) Genus specific unusual carotenoids in purple bacteria, Phaeospirillum and Roseospira: structures and biosynthesis. Curr Microbiol 63:75–80PubMedCrossRefGoogle Scholar
  23. 23.
    Tao L, Schenzle A, Odom JM, Cheng Q (2005) Novel carotenoid oxygenase involved in biosynthesis of 4,4′-diapolycopene dialdehyde. Appl Environ Microbiol 71:3294–3301PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Shinichi Takaichi
    • 1
  • Ch. Sasikala
    • 2
  • Ch. V. Ramana
    • 3
  • Keiko Okamura
    • 4
  • Akira Hiraishi
    • 4
  1. 1.Department of BiologyNippon Medical SchoolKawasakiJapan
  2. 2.JNT University Centre for EnvironmentHyderabadIndia
  3. 3.University of Hyderabad, Plant SciencesHyderabadIndia
  4. 4.Department of Environmental and Life SciencesToyohashi University of TechnologyToyohashiJapan

Personalised recommendations