Advertisement

Current Microbiology

, Volume 65, Issue 2, pp 133–140 | Cite as

Salmonella enterica Serovar Typhi Plasmid Impairs Dendritic Cell Responses to Infection

  • Li Wei
  • Shuyan Wu
  • Yuanyuan Li
  • Yuanyuan Chu
  • Rui HuangEmail author
Article

Abstract

Salmonella enterica serovar Typhi (S. typhi) evades from innate immunity by expression of a variety of pathogenic factors. The “pRST98” plasmid of S. typhi is involved in multidrug-resistant and virulence of S. typhi. However, its exact effect on host cell function remains elusive. Dendritic cells (DCs) play an important role in shaping immune response against Salmonella. For the purpose of investigation whether pRST98 might target DCs involved in adaptive immune response, murine DCs were infected with S. typhi wild type and mutant strains. S. typhi stimulation resulted in up-regulation of costimulatory molecules on DCs. S. typhi wild type resulted in decreased up-regulation of CD40, CD80, and CD86 expression. Experiments with S. typhi pRST98 mutant (S. typhi-Δ-pRST98) and S. typhi-Δ-pRST98 with a complemented plasmid encoding pRST98 (S. typhi-c-pRST98) revealed that pRST98 accounts for inhibition of surface molecule expression and functional maturity. S. typhi-Δ-pRST98 gave maximal levels of IL-12 and IFN-γ release compared with wild type S. typhi or the complemented strains. In contrast to IL-12 and IFN-γ, IL-10 secretion by S. typhi-Δ-pRST98-infected DCs was significantly lower than induction by S. typhi wild type. This indicates that immunity in response to pRST98 is skewed away from a protective Th1 response. Moreover, infection with S. typhi-Δ-pRST98 induced autophagy in DCs. We herein demonstrate S. typhi pRST98 plays essential roles in modulating DCs maturation, activation, inflammatory responses, and autophagy. Together, these data prove that pRST98 targets functions of DCs that are required for T-cell activation. This might contribute to evasion of adaptive immune responses by S. typhi.

Keywords

Typhoid Fever Costimulatory Molecule Functional Maturity Complementary Strain Cytokine Expression Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by Natural Science Foundation of China (No. 30972768), Special Research Fund for the Doctoral Program of High Education (No. 20103201110009), Natural Science Foundation of Jiangsu province (No. BK2011286), Qinglan Project of Jiangsu Province (No. SR13400211) and Program sponsored for scientific innovation research of college graduate in Jiangsu province (No. CX10B_042Z).

References

  1. 1.
    Beyene G, Nair S, Asrat D, Mengistu Y, Engers H, Wain J (2011) Multidrug resistant Salmonella Concord is a major cause of salmonellosis in children in Ethiopia. J Infect Dev Ctries 5:23–33PubMedGoogle Scholar
  2. 2.
    Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281:11374–11383PubMedCrossRefGoogle Scholar
  3. 3.
    Cheminay C, Mohlenbrink A, Hensel M (2005) Intracellular Salmonella inhibit antigen presentation by dendritic cells. J Immunol 174:2892–2899PubMedGoogle Scholar
  4. 4.
    Chiu HC, Soni S, Kulp SK, Curry H, Wang D, Gunn JS, Schlesinger LS et al (2009) Eradication of intracellular Francisella tularensis in THP-1 human macrophages with a novel autophagy inducing agent. J Biomed Sci 16:110PubMedCrossRefGoogle Scholar
  5. 5.
    Crump JA, Mintz ED (2010) Global trends in typhoid and paratyphoid fever. Clin Infect Dis 50:241–246PubMedCrossRefGoogle Scholar
  6. 6.
    Dreux M, Chisari FV (2009) Autophagy proteins promote hepatitis C virus replication. Autophagy 5:1224–1225PubMedCrossRefGoogle Scholar
  7. 7.
    Ferrari R, Galiana A, Cremades R, Rodriguez JC, Magnani M, Tognim MC, Oliveira TC et al (2011) Plasmid-mediated quinolone resistance by genes qnrA1 and qnrB19 in Salmonella strains isolated in Brazil. J Infect Dev Ctries 5:496–498PubMedCrossRefGoogle Scholar
  8. 8.
    Huang R, Wu S, Zhang X, Zhang Y (2005) Molecular analysis and identification of virulence gene on pRST98 from multi-drug resistant Salmonella typhi. Cell Mol Immunol 2:136–140PubMedGoogle Scholar
  9. 9.
    Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B (2009) Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci USA 106:14564–14569PubMedCrossRefGoogle Scholar
  10. 10.
    Jiang HR, Muckersie E, Robertson M, Xu H, Liversidge J, Forrester JV (2002) Secretion of interleukin-10 or interleukin-12 by LPS-activated dendritic cells is critically dependent on time of stimulus relative to initiation of purified DC culture. J Leukoc Biol 72:978–985PubMedGoogle Scholar
  11. 11.
    Jouanguy E, Doffinger R, Dupuis S, Pallier A, Altare F, Casanova JL (1999) IL-12 and IFN-gamma in host defense against mycobacteria and Salmonella in mice and men. Curr Opin Immunol 11:346–351PubMedCrossRefGoogle Scholar
  12. 12.
    Kaisho T, Akira S (2003) Regulation of dendritic cell function through toll-like receptors. Curr Mol Med 3:759–771PubMedCrossRefGoogle Scholar
  13. 13.
    Lapaquette P, Glasser AL, Huett A, Xavier RJ, Darfeuille-Michaud A (2010) Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol 12:99–113PubMedCrossRefGoogle Scholar
  14. 14.
    Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedCrossRefGoogle Scholar
  15. 15.
    O’Garra A, Vieira P (2007) T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 7:425–428PubMedCrossRefGoogle Scholar
  16. 16.
    Pozzi LA, Maciaszek JW, Rock KL (2005) Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells. J Immunol 175:2071–2081PubMedGoogle Scholar
  17. 17.
    Reis e Sousa C, Diebold SD, Edwards AD, Rogers N, Schulz O, Sporri R (2003) Regulation of dendritic cell function by microbial stimuli. Pathol Biol (Paris) 51:67–68CrossRefGoogle Scholar
  18. 18.
    Schnaith A, Kashkar H, Leggio SA, Addicks K, Kronke M, Krut O (2007) Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J Biol Chem 282:2695–2706PubMedCrossRefGoogle Scholar
  19. 19.
    Tobar JA, Carreno LJ, Bueno SM, Gonzalez PA, Mora JE, Quezada SA, Kalergis AM (2006) Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells. Infect Immun 74:6438–6448PubMedCrossRefGoogle Scholar
  20. 20.
    Wiesner M, Zaidi MB, Calva E, Fernandez-Mora M, Calva JJ, Silva C (2009) Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains. BMC Microbiol 9:131PubMedCrossRefGoogle Scholar
  21. 21.
    Wu S, Li Y, Xu Y, Li Q, Chu Y, Huang R, Qin Z (2010) A Salmonella enterica serovar Typhi plasmid induces rapid and massive apoptosis in infected macrophages. Cell Mol Immunol 7:271–278PubMedCrossRefGoogle Scholar
  22. 22.
    Wu S, Li Y, Xu Y, Song G, Qin Z, Huang R (2010) Macrophage apoptosis associated with Salmonella enterica serovar Typhi plasmid. Indian J Exp Biol 48:773–777PubMedGoogle Scholar
  23. 23.
    Zhao C, Wood MW, Galyov EE, Hopken UE, Lipp M, Bodmer HC, Tough DF et al (2006) Salmonella typhimurium infection triggers dendritic cells and macrophages to adopt distinct migration patterns in vivo. Eur J Immunol 36:2939–2950PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Li Wei
    • 1
    • 2
  • Shuyan Wu
    • 1
  • Yuanyuan Li
    • 1
  • Yuanyuan Chu
    • 1
  • Rui Huang
    • 1
    Email author
  1. 1.Medical College of Soochow UniversitySuzhouPeople’s Republic of China
  2. 2.Bengbu Medical CollegeBengbuPeople’s Republic of China

Personalised recommendations