Advertisement

Current Microbiology

, Volume 65, Issue 2, pp 183–188 | Cite as

Endolithic Phototrophs in Built and Natural Stone

  • Christine C. GaylardeEmail author
  • Peter M. Gaylarde
  • Brett A. Neilan
Article

Abstract

Lichens, algae and cyanobacteria have been detected growing endolithically in natural rock and in stone buildings in various countries of Australasia, Europe and Latin America. Previously these organisms had mainly been described in natural carbonaceous rocks in aquatic environments, with some reports in siliceous rocks, principally from extremophilic regions. Using various culture and microscopy methods, we have detected endoliths in siliceous stone, both natural and cut, in humid temperate and subtropical climates. Such endolithic growth leads to degradation of the stone structure, not only by mechanical means, but also by metabolites liberated by the cells. Using in vitro culture, transmission, optical and fluorescence microscopy, and confocal laser scanning microscopy, both coccoid and filamentous cyanobacteria and algae, including Cyanidiales, have been identified growing endolithically in the facades of historic buildings built from limestone, sandstone, granite, basalt and soapstone, as well as in some natural rocks. Numerically, the most abundant are small, single-celled, colonial cyanobacteria. These small phototrophs are difficult to detect by standard microscope techniques and some of these species have not been previously reported within stone.

Keywords

Sandstone Stromatolite Yucatan Peninsula Cyanobacterial Biomass Volcanic Tuff 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are indebted to Helen Dalton at UNSW for assistance with CLSM. BAN thanks the Australian Research Council for financial support.

References

  1. 1.
    Aghamiri R, Schwartzman DW (2002) Weathering rates of bedrock by lichens: a mini watershed study. Chem Geol 188:249–259CrossRefGoogle Scholar
  2. 2.
    Albertano P, Ciniglia C, Pinto G, Pollio A (2000) The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update. Hydrobiologia 433:137–143CrossRefGoogle Scholar
  3. 3.
    Asada R, Tazaki K (2001) Silica biomineralization of unicellular microbes under strongly acidic conditions. Can Mineral 39:1–24CrossRefGoogle Scholar
  4. 4.
    Banerjee M, Whitton BA, Wynn-Williams DD (2000) Surface phosphomonoesterase activity of a natural immobilized system: Chroococcidiopsis in an Antarctic desert rock. J App Phycol 12:549–552CrossRefGoogle Scholar
  5. 5.
    Bell RA (1993) Cryptoendolithic algae of hot semiarid lands and deserts. J Phycol 29:133–139CrossRefGoogle Scholar
  6. 6.
    Blackhurst RL, Genge MJ, Kearsley AT, Grady MM (2005) Cryptoendolithic alteration of Antarctic sandstones: pioneers or opportunists? J Geophys Res 110:E12S24. doi: 10.1029/2005JE002463 CrossRefGoogle Scholar
  7. 7.
    Boone DR, Castenholz RW, Garrity GM (2001) Bergey’s manual of systematic bacteriology, vol 1. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Burford EP, Kierans M, Gadd GM (2003) Geomycology: fungi in mineral substrata. Mycologist 17:98–107CrossRefGoogle Scholar
  9. 9.
    Crispim CA, Gaylarde CC, Gaylarde PM (2004) Biofilms on church walls in Porto Alegre, RS, Brazil, with special attention to cyanobacteria. Int Biodeterior Biodegrad 54:121–124CrossRefGoogle Scholar
  10. 10.
    De los Ríos A, Ascaso C (2005) Contributions of in situ microscopy to the current understanding of stone biodeterioration. Int Microbiol 8:181–188PubMedGoogle Scholar
  11. 11.
    De los Ríos A, Galván V, Ascaso C (2004) In situ microscopy diagnosis of biodeterioration processes occurring in the convent of Santa Cruz la Real (Segovia, Spain). Int Biodeterior Biodegrad 54:113–120CrossRefGoogle Scholar
  12. 12.
    De los Ríos A, Grube M, Sancho LS, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395. doi: 10.1111/j.1574-6941.2006.00256.x PubMedCrossRefGoogle Scholar
  13. 13.
    De los Rios A, Wierzchos J, Sancho LG, Green TGA, Ascaso C (2005) Ecology of endolithic lichens colonizing granite in continental Antarctica. The Lichenologist 37:383–395CrossRefGoogle Scholar
  14. 14.
    Diels L (1914) Die Algen-Vegetation der Südtiroler Dolomitriffe. Ber Dtsch Bot Ges 32:502–526Google Scholar
  15. 15.
    Ferris FG, Lowson EA (1997) Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara Escarpment. Can J Microbiol 43:211–219CrossRefGoogle Scholar
  16. 16.
    Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross desert, Antarctica. Polarforschung 58:251–259PubMedGoogle Scholar
  17. 17.
    Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169PubMedGoogle Scholar
  18. 18.
    Garcia-Pichel F, Belnap J, Neuer S, Schanz F (2003) Estimates of global cyanobacterial biomass and its distribution. Arch Hydrobiol Suppl Algol Stud 109:213–228Google Scholar
  19. 19.
    Garcia-Pichel F, Lopez-Cortes A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910PubMedCrossRefGoogle Scholar
  20. 20.
    Gaylarde CC, Gaylarde PM (2005) A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeterior Biodegrad 55:131–139CrossRefGoogle Scholar
  21. 21.
    Gaylarde CC, Gaylarde PM, Copp J, Neilan BA (2004) Polyphasic detection of cyanobacteria in terrestrial biofilms. Biofouling 20:71–79PubMedCrossRefGoogle Scholar
  22. 22.
    Gaylarde PM, Crispim CA, Neilan BA, Gaylarde CC (2005) Cyanobacteria from Brazilian building walls are distant relatives of aquatic genera. OMICS 9:30–42PubMedCrossRefGoogle Scholar
  23. 23.
    Gaylarde PM, Gaylarde CC (2004) Deterioration of siliceous stone monuments in Latin America: microorganisms and mechanisms. Corr Rev 22:395–415CrossRefGoogle Scholar
  24. 24.
    Gaylarde PM, Jungblut A-D, Gaylarde CC, Neilan BA (2006) Endolithic phototrophs from an active geothermal region in New Zealand. Geomicrobiol J 23:579–587CrossRefGoogle Scholar
  25. 25.
    Gaylarde CC, Rodríguez CH, Navarro-Noya YE, Ortega-Morales BO (2012) Microbial biofilms on the sandstone monuments of the Angkor Wat complex, Cambodia. Curr Microbiol 64:85–92PubMedCrossRefGoogle Scholar
  26. 26.
    Gerrath JF, Gerrath JA, Larson DW (1995) A preliminary account of the endolithic algae of limestone cliffs of the Niagara Escarpment. Can J Bot 73:788–793CrossRefGoogle Scholar
  27. 27.
    Gerrath JF, Gerrath JA, Matthes U, Larson DW (2000) Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Can J Bot 78:807–815Google Scholar
  28. 28.
    Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sed Petrol 51:475–478Google Scholar
  29. 29.
    Gross W, Heilmann I, Lenze D, Schnarrenberger C (2001) Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data. Eur J Phycol 36:275–280CrossRefGoogle Scholar
  30. 30.
    Gross W, Kuver J, Tischendorf G, Bouchaala N, Busch W (1998) Cryptoendolithic growth of the red alga Galdieria suphuraria in volcanic areas. Eur J Phycol 33:25–31CrossRefGoogle Scholar
  31. 31.
    Hernández-Chavarría F, Sittenfeld A (2006) Preliminary report on the extreme endolithic microbial consortium of ‘Pailas Frías’, ‘Rincón de la Vieja’ volcano, Costa Rica. Phycol Res 54:104–107CrossRefGoogle Scholar
  32. 32.
    Hirsch P, Eckhardt FEW, Jr Palmer RJ (1995) Fungi active in the weathering of rock and stone monuments. Can J Bot 73:S1384–S1390CrossRefGoogle Scholar
  33. 33.
    Horath T, Bachofen R (2009) Molecular characterization of an endolithic microbial community in dolomite rock in the central Alps (Switzerland). Microb Ecol. doi:  10.1007/s00248-008-9483-7
  34. 34.
    Horath T, Neu R, Bachofen R (2006) An endolithic microbial community in dolomite rock in central Switzerland: characterization by reflection spectroscopy, pigment analyses, scanning electron microscopy, and laser scanning microscopy. Microb Ecol 51:353–364PubMedCrossRefGoogle Scholar
  35. 35.
    Kelly LC, Cockell CS, Herrera-Belaroussi A, Piceno Y, Andersen G, DeSantis T, Brodie E, Thorsteinsson T, Marteinsson V, Poly F, Leroux X (2011) Bacterial diversity of terrestrial crystalline volcanic rocks, Iceland. Microb Ecol 62:69–79. doi: 10.1007/s00248-011-9864-1 PubMedCrossRefGoogle Scholar
  36. 36.
    Lange OL, Meyer A, Büdel B (1994) Net photosynthesis activation of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with Microcoleus sociatus isolated from a desert soil crust. Func Ecol 8:52–57CrossRefGoogle Scholar
  37. 37.
    Macintyre IG, Prufert-Bebout L, Reid RP (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47:915–921CrossRefGoogle Scholar
  38. 38.
    McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–27PubMedCrossRefGoogle Scholar
  39. 39.
    Neilan BA, Jacobs D, Del Dot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697PubMedCrossRefGoogle Scholar
  40. 40.
    Neilan BA, Burns BP, Relman D, Lowe DR (2002) Molecular identification of cyanobacteria associated with stromatolites from distinct geographical locations. Astrobiol 7:10–26Google Scholar
  41. 41.
    Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microb Ecol 16:271–289PubMedCrossRefGoogle Scholar
  42. 42.
    Norris TB, Castenholz RW (2006) Endolithic photosynthetic communities within ancient and recent travertine deposits in Yellowstone National Park. FEMS Microbiol Ecol 57:470–483PubMedCrossRefGoogle Scholar
  43. 43.
    Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. PNAS 24:19964–19969Google Scholar
  44. 44.
    Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  45. 45.
    Schwabe GH (1936) Übereinige Blaualgen aus dem mitleren und südlichen Chile. Verh Deutsch Wiss Ver Santiago de Chile N.F (Valparaiso) 3:113–146Google Scholar
  46. 46.
    Seeler J-S, Golubic S (1991) Iyengariella endolithica sp. nova, a carbonate boring stigonematalean cyanobacterium from a warm spring-fed lake: nature to culture. Algol Stud 64:399–410Google Scholar
  47. 47.
    Siebert J, Hirsch P, Hoffmann B, Gliesche CG, Peissl K, Jendrach M (1996) Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): diversity, properties and interactions. Biodivers Conserv 5:1337–1363CrossRefGoogle Scholar
  48. 48.
    Sigler WV, Bachofen R, Zeyer J (2003) Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5:618–627PubMedCrossRefGoogle Scholar
  49. 49.
    Tretiach M, Pecchiari M (1995) Gas exchange rates and chlorophyll content of epi- and endolithic lichens from the Trieste Karst (NE Italy). New Phytol 130:585–592CrossRefGoogle Scholar
  50. 50.
    Vincent WF (2000) Cyanobacterial dominance in the Polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 321–340Google Scholar
  51. 51.
    Wade BD, Garcia-Pichel F (2003) Evaluation of DNA extraction methods for molecular analyses of microbial communities in modern calcarious microbialites. Geomicrobiol J 20:549–561CrossRefGoogle Scholar
  52. 52.
    Walker JJ, Pace NR (2007) Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504PubMedCrossRefGoogle Scholar
  53. 53.
    Walker JJ, Pace NR (2007) Endolithic microbial ecosystems. Ann Rev Microbiol 61:331–347CrossRefGoogle Scholar
  54. 54.
    Ward DM, Sategoeds CM, Nold SC, Ramsing NB, Ferris MJ, Bateson MM (1997) Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures. Antonie Van Leeuwenhoek 71:143–150PubMedCrossRefGoogle Scholar
  55. 55.
    Weber B, Wessels DCJ, Budel B (1996) Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algol Stud 83:565–579Google Scholar
  56. 56.
    Wessels DCJ, Budel B (1995) Epilithic and cryptoendolithic cyanobacteria of Clarens sandstone cliffs in the Golden Gate Highlands National Park. S Afr Bot Acta 108:220–226Google Scholar
  57. 57.
    Whitton BA, Potts M (2000) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  58. 58.
    Wierzchos J, Ascaso C (1996) Morphological and chemical features of bioweathered granitic biotite induced by lichen activity. Clays Clay Miner 44:652–657CrossRefGoogle Scholar
  59. 59.
    Wong FKY, Lau MCY, Lacap DC, Aitchison JC, Cowan DA, Pointing SB (2010) Endolithic microbial colonization of limestone in a high-altitude arid environment. Microb Ecol: 689–699. doi:  10.1007/s00248-009-9607-8
  60. 60.
    Yoon HS, Ciniglia C, Wu M, Cameron JM, Pinto G, Pollio A, Bhattacharya D (2006) Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta) BMC Evolut Biol 6:78. doi: 10.1186/1471-2148-6-78 On-line at http://www.biomedcentral.com/1471-2148/6/78

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christine C. Gaylarde
    • 1
    Email author
  • Peter M. Gaylarde
    • 2
  • Brett A. Neilan
    • 3
  1. 1.Microbiology Research Laboratory, School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
  2. 2.LondonUK
  3. 3.University of New South WalesSydneyAustralia

Personalised recommendations