Current Microbiology

, Volume 64, Issue 5, pp 418–426 | Cite as

Isolation and Characterization of a Lytic Myoviridae Bacteriophage PAS-1 with Broad Infectivity in Aeromonas salmonicida

  • J. H. Kim
  • J. S. Son
  • Y. J. Choi
  • C. H. Choresca
  • S. P. Shin
  • J. E. Han
  • J. W. Jun
  • D. H. Kang
  • C. Oh
  • S. J. Heo
  • S. C. Park


To search for candidate control agents against Aeromonas salmonicida subsp. salmonicida infections in aquaculture, one bacteriophage (phage), designated as PAS-1, was isolated from the sediment samples of the rainbow trout (Oncorhynchus mykiss) culture farm in Korea. The PAS-1 was morphologically classified as Myoviridae and possessed approximately 48 kb of double-strand genomic DNA. The phage showed broad host ranges to other subspecies of A. salmonicida as well as A. salmonicida subsp. salmonicida including antibiotic-resistant strains. Its latent period and burst size were estimated to be approximately 40 min and 116.7 PFU/cell, respectively. Furthermore, genomic and structural proteomic analysis of PAS-1 revealed that the phage was closely related to other Myoviridae phages infecting enterobacteria or Aeromonas species. The bacteriolytic activity of phage PAS-1 was evaluated using three subspecies of A. salmonicida strain at different doses of multiplicity of infection, and the results proved to be efficient for the reduction of bacterial growth. Based on these results, PAS-1 could be considered as a novel Aeromonas phage and might have potentiality to reduce the impacts of A. salmonicida infections in aquaculture.


Aeromonas salmonicida Bacteriophage PAS-1 Myoviridae Aquaculture 



This study was financially supported by Basic Science Research Program (2010-0016748) and Priority Research Centers Program (2009-0093822) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, and by Korea Research Foundation Grant (KRF-2008-331-E00385).

Conflict of Interest

The author(s) declare that they have no competing interests.


  1. 1.
    Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243PubMedCrossRefGoogle Scholar
  2. 2.
    Ackermann HW, Dauguet C, Paterson WD, Popoff M, Rouf MA, Vieu JF (1985) Aeromonas bacteriophages: reexamination and classification. Ann Inst Pasteur Virol 136:175–199CrossRefGoogle Scholar
  3. 3.
    Adams M (1959) Bacteriophages. Interscience Publishers, New YorkGoogle Scholar
  4. 4.
    Beilstein F, Dreiseikelmann B (2008) Temperate bacteriophage φO18P from an Aeromonas media isolate: characterization and complete genome sequence. Virology 373:25–29PubMedCrossRefGoogle Scholar
  5. 5.
    Comeau AM, Bertrand C, Letarov A, Tétart F, Krisch HM (2007) Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 362:384–396PubMedCrossRefGoogle Scholar
  6. 6.
    Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball A (2005) Virus taxonomy. VIIIth Report of the International Committee on Taxonomy of Viruses, pp 35–85Google Scholar
  7. 7.
    Han JE, Kim JH, Choresca CH, Shin SP, Jun JW, Chai JY, Han SY, Park SC (2011) First description of the qnrS-like (qnrS5) gene and analysis of quinolone resistance-determining regions in motile Aeromonas spp. from diseased fish and water. Res Microbiol. doi: 10.1016/j.resmic.2011.09.001
  8. 8.
    Imbeault S, Parent S, Lagacé M, Uhland CF, Blais JF (2006) Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed brook trout. J Aquat Anim Health 18:203–214CrossRefGoogle Scholar
  9. 9.
    Jamalludeen N, Kropinski AM, Johnson RP, Lingohr E, Harel J, Gyles CL (2007) Complete genomic sequence of bacteriophage φEcoM-GJ1: a novel phage that has myovirus morphology and a podovirus-like RNA polymerase. Appl Environ Microbiol 74:516–525PubMedCrossRefGoogle Scholar
  10. 10.
    Karunasagar I, Shivu MM, Girisha SK, Krohne G, Karunasagar I (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 268:288–292CrossRefGoogle Scholar
  11. 11.
    Kim JH, Gomez DK, Nakai T, Park SC (2010) Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. Vet Microbiol 140:109–115PubMedCrossRefGoogle Scholar
  12. 12.
    Kim JH, Hwang SY, Son JS, Han JE, Jun JW, Shin SP, Choresca CH, Choi YJ, Park YH, Park SC (2011) Molecular characterization of tetracycline- and quinolone-resistant Aeromonas salmonicida isolated in Korea. J Vet Sci 12:41–48PubMedCrossRefGoogle Scholar
  13. 13.
    Konopa G, Taylor K (1979) Coliphage λ ghosts obtained by osmotic shock or LiCl treatment are devoid of J- and H-gene products. J Gen Virol 43:729–733PubMedCrossRefGoogle Scholar
  14. 14.
    Lavigne R, Darius P, Summer E, Seto D, Mahadevan P, Nilsson A, Ackermann H, Kropinski A (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224PubMedCrossRefGoogle Scholar
  15. 15.
    Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115PubMedCrossRefGoogle Scholar
  16. 16.
    Munro J, Oakey J, Bromage E, Owens L (2003) Experimental bacteriophage-mediated virulence in strains of Vibrio harveyi. Dis Aquat Org 54:187–194PubMedCrossRefGoogle Scholar
  17. 17.
    Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153:13–18PubMedCrossRefGoogle Scholar
  18. 18.
    Nolan J, Petrov V, Bertrand C, Krisch H, Karam J (2006) Genetic diversity among five T4-like bacteriophages. Virol J 3:30PubMedCrossRefGoogle Scholar
  19. 19.
    Petrov V, Nolan J, Bertrand C, Levy D, Desplats C, Krisch H, Karam J (2006) Plasticity of the gene functions for DNA replication in the T4-like phages. J Mol Biol 361:46–68PubMedCrossRefGoogle Scholar
  20. 20.
    Petrov VM, Ratnayaka S, Karam JD (2010) Genetic insertions and diversification of the PolB-Type DNA polymerase (gp43) of T4-related phages. J Mol Biol 395:457–474PubMedCrossRefGoogle Scholar
  21. 21.
    Popoff M (1971) Étude sur les Aeromonas salmonicida—II. Caractérisation des bactériophages actifs sur les Aeromonas salmonicida et lysotypie. Ann Rech Vét 2:33–45Google Scholar
  22. 22.
    Son JS, Jun SY, Kim EB, Park JE, Paik HR, Yoon SJ, Kang SK, Choi YJ (2010) Complete genome sequence of a newly isolated lytic bacteriophage, EFAP-1 of Enterococcus faecalis, and antibacterial activity of its endolysin EFAL-1. J Appl Microbiol 108:1769–1779PubMedCrossRefGoogle Scholar
  23. 23.
    Tétart F, Repoila F, Monod C, Krisch HM (1996) Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J Mol Biol 258:726–731PubMedCrossRefGoogle Scholar
  24. 24.
    Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, Muraoka A, Wakiguchi H, Matsuzaki S (2008) Isolation and characterization of a novel Enterococcus faecalis bacteriophage φEF24C as a therapeutic candidate. FEMS Microbiol Lett 278:200–206PubMedCrossRefGoogle Scholar
  25. 25.
    Verner-Jeffreys DW, Algoet M, Pond MJ, Virdee HK, Bagwell NJ, Roberts EG (2007) Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture 270:475–484CrossRefGoogle Scholar
  26. 26.
    Vinod MG, Shivu MM, Umesha KR, Rajeeva BC, Krohne G, Karunasagar I, Karunasagar I (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117–124CrossRefGoogle Scholar
  27. 27.
    Wiklund T, Dalsgaard I (1998) Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species: a review. Dis Aquat Org 32:49–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • J. H. Kim
    • 1
    • 4
  • J. S. Son
    • 2
  • Y. J. Choi
    • 3
  • C. H. Choresca
    • 1
  • S. P. Shin
    • 1
  • J. E. Han
    • 1
  • J. W. Jun
    • 1
  • D. H. Kang
    • 4
  • C. Oh
    • 4
  • S. J. Heo
    • 4
  • S. C. Park
    • 1
  1. 1.Laboratory of Aquatic Animal Medicine, College of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulRepublic of Korea
  2. 2.Basic Science Institute for Cell Damage ControlSogang UniversitySeoulRepublic of Korea
  3. 3.Laboratory of Animal Cell Biotechnology, Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea
  4. 4.Korea Ocean Research & Development InstituteAnsanRepublic of Korea

Personalised recommendations