Advertisement

Current Microbiology

, Volume 64, Issue 5, pp 441–448 | Cite as

Leucobacter margaritiformis sp. nov., Isolated from Bamboo Extract

  • Jin-Ha Lee
  • Sang-Seob LeeEmail author
Article

Abstract

A Gram-positive aerobic rod-shaped non-motile bacterium designated A23T was isolated from bamboo extract that had been used to remove odor and was characterized to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain A23T belongs to the phylum Actinobacteria. The highest degree of sequence similarities was determined to be with Leucobacter salsicius M1-8T (96.7%), Leucobacter exalbidus K-540BT (96.4%), Leucobacter chromiireducens subsp. chromiireducens L-1T (96.4%), Leucobacter komagatae IFO 15245T (96.4%) and Leucobacter aerolatus Sj10T (96.4%). Chemotaxonomic data revealed that strain A23T possesses menaquinone MK11, and its cell wall peptidoglycan contained 2,4-diaminobutyric acid, alanine, glycine, glutamic acid and γ-aminobutyric acid. The polar lipid profile of strain A23T contained diphosphatidylglycerol, phosphatidylglycerol and an unknown glycolipid. The predominant fatty acids were iso-C16:0 (31.5%), anteiso-C15:0 (43.2%) and anteiso-C17:0 (13.9%), all of which corroborated the assignment of the strain to the genus Leucobacter. Based on these data, A23T (=KEMC 551-022T = JCM 17538T) should be classified as the type strain for a novel Leucobacter species, for which the name Leucobacter margaritiformis sp. nov. is proposed.

Keywords

Cell Wall Peptidoglycan Nutrient Broth Medium Strain A23T Unknown Glycolipid Menaquinone MK11 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research work was supported by Korea Ministry of Environment as: The GAIA Project (173-092-012) and Korea Ministry of Educational Science and Technology (2011-0000544).

Supplementary material

284_2012_89_MOESM1_ESM.ppt (178 kb)
Supplementary Fig. S1. Maximum-parsimony phylogenetic tree based on 16S rRNA gene sequences, showing the phylogenetic relationships between strain A23T and related species (all Leucobacter species and related genera). Bar represents 20 substitutions per nucleotide position. Microbial names in bold indicate type species of the related genera. (PPT 182 kb)
284_2012_89_MOESM2_ESM.ppt (174 kb)
Supplementary Fig. S2. Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences, showing the phylogenetic relationships between strain A23T and related species (all Leucobacter species and related genera). Bar represents 0.02 substitutions per nucleotide position. Microbial names in bold indicate type species of the related genera. (PPT 177 kb)

References

  1. 1.
    Behrendt U, Ulrich A, Schumann P (2008) Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 58:2574–2578PubMedCrossRefGoogle Scholar
  2. 2.
    Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual, 6th edn. Pearson Education, Inc. Benjamin Cummings, CAGoogle Scholar
  3. 3.
    Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedGoogle Scholar
  4. 4.
    Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GH (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 21–33Google Scholar
  5. 5.
    Euzéby JP (2008) List of prokaryotic names with standing in nomenclature. http://www.bacterio.cict.fr/. Accessed 20 Nov 2010
  6. 6.
    Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  7. 7.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  8. 8.
    Halpern M, Shaked T, Pukall R et al (2009) Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 59:665–670PubMedCrossRefGoogle Scholar
  9. 9.
    Kim MK, Im WT, Ohta H et al (2005) Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43:152–157PubMedGoogle Scholar
  10. 10.
    Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Koide CL, Collier AC, Berry MJ et al (2011) The effect of bamboo extract on hepatic biotransforming enzymes—findings from an obese-diabetic mouse model. J Ethnopharmacol 133:37–45PubMedCrossRefGoogle Scholar
  12. 12.
    Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  13. 13.
    Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  14. 14.
    Lin YC, Uemori K, de Briel DA et al (2004) Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 54:1669–1676PubMedCrossRefGoogle Scholar
  15. 15.
    Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  16. 16.
    Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  17. 17.
    Morais PV, Francisco R, Branco R et al (2004) Leucobacter chromiireducens sp. nov, and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 27:646–652PubMedCrossRefGoogle Scholar
  18. 18.
    Morais PV, Paulo C, Francisco R et al (2006) Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 29:414–421PubMedCrossRefGoogle Scholar
  19. 19.
    Muir RE, Tan MW (2007) Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens. Int J Syst Evol Microbiol 57:2770–2776PubMedCrossRefGoogle Scholar
  20. 20.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  21. 21.
    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., NewarkGoogle Scholar
  22. 22.
    Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedGoogle Scholar
  23. 23.
    Shin NR, Kim MS, Jung MJ et al (2011) Leucobacter celer sp. nov., isolated from Korean fermented seafood. Int J Syst Evol Microbiol 61:2353–2357PubMedCrossRefGoogle Scholar
  24. 24.
    Somvanshi VS, Lang E, Schumann P et al (2007) Leucobacter iarius sp. nov., in the family Microbacteriaceae. Int J Syst Evol Microbiol 57:682–686PubMedCrossRefGoogle Scholar
  25. 25.
    Takeuchi M, Weiss N, Schumann P et al (1996) Leucobacter komagatae gen. nov., sp. nov., a new aerobic Gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:967–971PubMedCrossRefGoogle Scholar
  26. 26.
    Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  27. 27.
    Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  28. 28.
    Weisburg WG, Barns SM, Pelletier DA et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  29. 29.
    Yuan JX (1983) Research on the production and botanical origin of bamboo juice in Eastern China. Zhong Yao Tong Bao 8(10–12):1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Natural Science, Department of BioengineeringKyonggi UniversitySuwonRepublic of Korea
  2. 2.Division of Natural Science, Department of Life ScienceKyonggi UniversitySuwonRepublic of Korea

Personalised recommendations