Current Microbiology

, 63:408 | Cite as

Two Types of Phytases (Histidine Acid Phytase and β-Propeller Phytase) in Serratia sp. TN49 from the Gut of Batocera horsfieldi (Coleoptera) Larvae

  • Rui Zhang
  • Peilong Yang
  • Huoqing Huang
  • Pengjun Shi
  • Tiezheng Yuan
  • Bin YaoEmail author


Microbial phytases play a major role in the mineralization of organic phosphorous, especially in symbiotic plants and animals. In this study, we identified two types of phytases in Serratia sp. TN49 that was harbored in the gut of Batocera horsfieldi (Coleoptera) larvae. The two phytases, an acidic histidine acid phosphatase (PhyH49) and an alkaline β-propeller phytase (PhyB49), shared low identities with known phytases (61% at most). PhyH49 and PhyB49 produced in Escherichia coli exhibited maximal activities at pH 5.0 (60°C) and pH 7.5–8.0 (45°C), respectively, and are complementary in phytate degradation over the pH range 2.0–9.0. Serratia sp. TN49 harboring both PhyH49 and PhyB49 might make it more adaptive to environment change, corresponding to the evolution trend of microorganism.


Phytic Acid Serratia Phytase Activity Horizontal Gene Transfer Event Xanthomonas Campestri 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the National Natural Science Foundation of China (31001025) and the China Modern Agriculture Research System (CARS-42).


  1. 1.
    Cheng C, Lim B (2006) β-Propeller phytases in the aquatic environment. Arch Microbiol 185:1–13PubMedCrossRefGoogle Scholar
  2. 2.
    Devillard E, Newbold CJ, Scott KP et al (1999) A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from Gram–positive bacteria. FEMS Microbiol Lett 181:145–152PubMedCrossRefGoogle Scholar
  3. 3.
    Dillon R, Dillon V (2004) The gut bacteria of insects: nonpathogenic interactions. Ann Rev Entomol 49:71–92CrossRefGoogle Scholar
  4. 4.
    Fu S, Sun J, Qian L, Li Z (2008) Bacillus phytases: present scenario and future perspectives. Appl Biochem Biophys 151:1–8Google Scholar
  5. 5.
    Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17:352–361PubMedGoogle Scholar
  6. 6.
    Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113PubMedCrossRefGoogle Scholar
  7. 7.
    Huang H, Luo H, Yang P et al (2006) A novel phytase with preferable characteristics from Yersinia intermedia. Biochem Biophys Res Commun 350:884–889PubMedCrossRefGoogle Scholar
  8. 8.
    Huang H, Shi P, Wang Y et al (2009) Diversity of β-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol 75:1508–1516PubMedCrossRefGoogle Scholar
  9. 9.
    Huang H, Shao N, Wang Y et al (2009) A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl Microbiol Biotechnol 83:249–259PubMedCrossRefGoogle Scholar
  10. 10.
    Huang H, Zhang R, Fu D et al (2010) Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation. Environ Microbiol 13:747–757PubMedCrossRefGoogle Scholar
  11. 11.
    Jorquera M, Martinez O, Maruyama F et al (2008) Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microb Environ 23:182–191CrossRefGoogle Scholar
  12. 12.
    Lim B, Yeung P, Cheng C, Hill J (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J 1:321–330PubMedGoogle Scholar
  13. 13.
    Mullaney E, Ullah A (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312:179–184PubMedCrossRefGoogle Scholar
  14. 14.
    Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372PubMedCrossRefGoogle Scholar
  15. 15.
    Sajidan A, Farouk A, Greiner R et al (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118PubMedCrossRefGoogle Scholar
  16. 16.
    Schloss PD, Delalibera I, Handelsman J, Raffa KF (2006) Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ Entomol 35:625–629CrossRefGoogle Scholar
  17. 17.
    Shedova E, Lipasova V, Velikodvorskaya G et al (2008) Phytase activity and its regulation in a rhizospheric strain of Serratia plymuthica. Folia Microbiol (Praha) 53:110–114CrossRefGoogle Scholar
  18. 18.
    Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781PubMedCrossRefGoogle Scholar
  19. 19.
    Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 357:449–469PubMedCrossRefGoogle Scholar
  20. 20.
    Watanabe K, Sato M (1998) Plasmid-mediated gene transfer between insect-resident bacteria, Enterobacter cloacae, and plant-epiphytic bacteria, Erwinia herbicola, in guts of silkworm larvae. Curr Microbiol 37:352–355PubMedCrossRefGoogle Scholar
  21. 21.
    Wodzinski R, Ullah A (1996) Phytase. Adv Appl Microbiol 42:263–302PubMedCrossRefGoogle Scholar
  22. 22.
    Zhou J, Zhang R, Shi P et al (2011) A novel low-temperature-active β-glucosidase from symbiotic Serratia sp. TN49 reveals four essential positions for substrate accommodation. Appl Microbiol Biotechnol. doi: 10.1007/s00253-011-3323-2

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rui Zhang
    • 1
    • 2
  • Peilong Yang
    • 1
  • Huoqing Huang
    • 1
  • Pengjun Shi
    • 1
  • Tiezheng Yuan
    • 1
  • Bin Yao
    • 1
    Email author
  1. 1.Key Laboratory for Feed Biotechnology of the Ministry of AgricultureFeed Research Institute, Chinese Academy of Agricultural SciencesBeijingChina
  2. 2.College of Life SciencesYunnan Normal UniversityKunmingChina

Personalised recommendations