Current Microbiology

, 63:273 | Cite as

Diversity of Arbuscular Mycorrhizal Fungi Associated with Plants Growing in Fly Ash Pond and Their Potential Role in Ecological Restoration

Article

Abstract

Root colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in plants growing in fly ash pond. Eight species could be separated morphologically, while phylogenetic analyses after PCR amplification of the ITS region followed by RFLP and sequencing revealed seven different AM fungal sequence types. Phylogenetic analysis showed that these sequences cluster into four discrete groups, belonging to the genus Glomus and Archaeospora. Inoculation of plants with spores of AM fungal consortia (Glomus etunicatum, Glomus heterogama, Glomus maculosum, Glomus magnicaule, Glomus multicaule, Glomus rosea, Scutellospora heterogama, and Scutellospora nigra) along with colonized root pieces increased the growth (84.9%), chlorophyll (54%), and total P content (44.3%) of Eucalyptus tereticornis seedlings grown on fly ash compared to non-inoculated seedlings. The growth improvement was the consequence of increased P nutrition and decreased Al, Fe, Zn, and Cu accumulations. These observations suggested that the inoculation of tree seedlings with stress adapted AM fungi aid in the reclamation of fly ash ponds.

References

  1. 1.
    Appoloni S, Lekberg Y, Tercek MT, Zabinski CA, Redecker D (2008) Molecular community analysis of arbuscular mycorrhiza fungi in roots of geothermal soils in Yellowstone National Park (USA). Microb Ecol 56:649–659PubMedCrossRefGoogle Scholar
  2. 2.
    Arnon DE (1949) Copper enzyme in isolated chloroplast, polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1PubMedCrossRefGoogle Scholar
  3. 3.
    Arriagadaa CA, Herrerab MA, Ocampo JA (2007) Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. J Environ Manag 84:93–99CrossRefGoogle Scholar
  4. 4.
    Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedCrossRefGoogle Scholar
  5. 5.
    Bedini S, Turrini A, Rigo C, Argese E, Giovannetti M (2010) Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biol Biochem 42:758–765CrossRefGoogle Scholar
  6. 6.
    Bray RH, Kurtz LT (1945) Determination of total organic and available forms of phosphorus in soils. Soil Sci 59:39–45CrossRefGoogle Scholar
  7. 7.
    Chen BD, Christie P, Li XL (2001) A modified glass bead compartment cultivation system for studies on nutrient uptake by arbuscular mycorrhiza. Chemosphere 42:185–192PubMedCrossRefGoogle Scholar
  8. 8.
    Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265CrossRefGoogle Scholar
  9. 9.
    Cumming JR, Ning J (2003) Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.). J Exp Bot 54:1447–1459PubMedCrossRefGoogle Scholar
  10. 10.
    Enkhtuya B, Rydlová J, Vosátka M (2000) Effectiveness of indigenous and non-indigenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and man-made habitats. Appl Soil Ecol 14:201–211CrossRefGoogle Scholar
  11. 11.
    Enkhtuya B, Poschl M, Vosatka M (2005) Native grass facilitates mycorrhizal colonization and P uptake of tree seedlings in two anthropogenic substrates. Water Air Soil Pollut 166:217–236CrossRefGoogle Scholar
  12. 12.
    Eom AH, David C, Hartnett A, Gail WT, Wilson C (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tall grass prairie. Oecologia 122:435–444CrossRefGoogle Scholar
  13. 13.
    Galván GA, Parádi I, Burger K, Baar J, Kuyper TW, Scholten OE, Kik C (2009) Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza 19:317–328PubMedCrossRefGoogle Scholar
  14. 14.
    Gerdemann JW, Nicholson TH (1963) Spores of mycorrhizal endogone species extracted from the soil by wet sieving and decanting. Trans Br Mycol Soc 46:2345–2440CrossRefGoogle Scholar
  15. 15.
    Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500CrossRefGoogle Scholar
  16. 16.
    González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefGoogle Scholar
  17. 17.
    Guadarrama P, Alvarez-Sanchez FJ (1999) Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico. Mycorrhiza 8:267–270CrossRefGoogle Scholar
  18. 18.
    Haynes RJ (2009) Reclamation and revegetation of fly ash disposal sites: challenges and research needs. J Environ Manag 90:43–53CrossRefGoogle Scholar
  19. 19.
    Juwarkar AA, Jambhulkar HP (2008) Restoration of fly ash dump through biological interventions. Environ Monit Assess 139:355–365PubMedCrossRefGoogle Scholar
  20. 20.
    Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298PubMedCrossRefGoogle Scholar
  21. 21.
    Li T, Li L, Sha T, Zhang H, Zhao Z (2010) Molecular diversity of arbuscular mycorrhizal fungi associated with two dominant xerophytes in a valley-type savanna, southwest China. Appl Soil Ecol 44:61–66CrossRefGoogle Scholar
  22. 22.
    Lorgio EA, Julio RG, Peter LM (1999) Variation in soil microorganisms and nutrients underneath and outside the canopy of Adesimia bedwellii (Papilionaceae) shrubs in arid coastal Chile following drought and above average rainfall. J Arid Environ 42:61–70CrossRefGoogle Scholar
  23. 23.
    McGarity JW, Myers MG (1967) A survey of urease activity in soils of northern New South Wales. Plant Soil 27:217–238CrossRefGoogle Scholar
  24. 24.
    Ministry of Environment and Forests (MOEF) Notification (2007) Fly Ash Notification 2007. Ministry of Environment and Forests, New DelhiGoogle Scholar
  25. 25.
    Morton JB (1993) Problems and solution for the integration of glomalean taxonomy, systematic biology, and the study of endomycorrhizal phenomena. Mycorrhiza 2:97–109CrossRefGoogle Scholar
  26. 26.
    Mosse B (1975) Specificity in VA mycorrhizas. In: Sander FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 469–484Google Scholar
  27. 27.
    Ning J (2000) Mycorrhizal roles in broomsedge plants under phosphorus limitation and aluminum toxicity. PhD dissertation, West Virginia University, Morgantown, WVGoogle Scholar
  28. 28.
    Oliveira RS, Boyer LB, Carvalho MF, Jeffries P, Vosátka M, Castro PML, Dodd JC (2010) Genetic, phenotypic and functional variation within a Glomus geosporum isolate cultivated with or without the stress of a highly alkaline anthropogenic sediment. Appl Soil Ecol 45:39–48CrossRefGoogle Scholar
  29. 29.
    Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790CrossRefGoogle Scholar
  30. 30.
    Ouzounidou G (1995) Cu-ions mediated changes in growth, chlorophyll and other ion contents in a Cu-tolerant Koeleria splendens. Biol Plantarum 37:71–78CrossRefGoogle Scholar
  31. 31.
    Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis, Part 2D. Chemical and microbiological properties, 2nd edn. Agronomy No. 9, ASA. SSSA, MadisonGoogle Scholar
  32. 32.
    Pennisi E (2008) Proposal to ‘wikify’ GeeBank meets stiff resistance. Science 319:1598–1599PubMedCrossRefGoogle Scholar
  33. 33.
    Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160CrossRefGoogle Scholar
  34. 34.
    Pringle A, Bever AJ (2002) Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot 89:1439–1446PubMedCrossRefGoogle Scholar
  35. 35.
    Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80CrossRefGoogle Scholar
  36. 36.
    Redecker D, Hijri I, Wiemken A (2003) Molecular identification of arbuscular mycorrhizal fungi in roots: perspectives and problems. Folia Geobot 38:113–124CrossRefGoogle Scholar
  37. 37.
    Renker C, Blanke V, Buscot F (2005) Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environ Pollut 135:255–266PubMedCrossRefGoogle Scholar
  38. 38.
    Rezaee Danesh Y, Mohammadi Goltapeh IE, Alizadeh A, Varma A, Mukerjii KG (2007) Arbuscular-mycorrhizal fungi associated with alfalfa rhizosphere in Iran. Am-Eur J Agric Environ Sci 2:574–580Google Scholar
  39. 39.
    Robinson-Boyer L, Grzyb I, Jeffries P (2009) Shifting the balance from qualitative to quantitative analysis of arbuscular mycorrhizal communities in field soils. Fungal Ecol 2:1–9CrossRefGoogle Scholar
  40. 40.
    Schenck NC, Pérez Y (1990) Manual for identification of vesicular arbuscular mycorrhizal fungi. INVAM, University of Florida, GainesvilleGoogle Scholar
  41. 41.
    Selvam A, Mahadevan A (2002) Distribution of mycorrhizas in an abandoned fly ash pond and mined sites of Neyveli Lignite Corporation, Tamil Nadu, India. Basic Appl Ecol 3:277–284CrossRefGoogle Scholar
  42. 42.
    Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, CambridgeGoogle Scholar
  43. 43.
    Sylvia DM, Williams SE (1992) Vesicular-arbuscular mycorrhizae and environmental stresses. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA, Madison, WI, pp 101–124Google Scholar
  44. 44.
    Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307CrossRefGoogle Scholar
  45. 45.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  46. 46.
    Vivas A, Barea JM, Azcón R (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134:257–266PubMedCrossRefGoogle Scholar
  47. 47.
    Vosatka M (2001) A future role for the use of arbuscular mycorrhizal fungi in soil remediation: a chance for small-medium enterprises? Minerva Biotechnol 13:69–72Google Scholar
  48. 48.
    Walker C (1992) Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales)—a possible way forward. Agronomie 12:887–897CrossRefGoogle Scholar
  49. 49.
    Walkley AJ, Black IA (1934) Estimation of soil organic carbon by the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  50. 50.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, CA, pp 315–322Google Scholar
  51. 51.
    Wong MH, Wong JWC (1990) Effects of fly-ash on yields and elemental composition of two vegetables, Brassica parachinensis and B. chinensis. Agric Ecosys Environ 30:25Google Scholar
  52. 52.
    Wu FY, Bi YL, Wong MH (2009) Dual inoculation with an arbuscular mycorrhizal fungus and rhizobium to facilitate the growth of Alfalfa on coal mine substrates. J Plant Nutr 32:755–771CrossRefGoogle Scholar
  53. 53.
    Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi Gh, Jouzani GhS, Nekouei MK, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia

Personalised recommendations