Advertisement

Current Microbiology

, Volume 63, Issue 2, pp 213–217 | Cite as

Actimicrobium antarcticum gen. nov., sp. nov., of the Family Oxalobacteraceae, Isolated from Antarctic Coastal Seawater

  • Eun Hye Kim
  • Hyun-Jeong Jeong
  • Yoo Kyoung Lee
  • Eun Young Moon
  • Jang-Cheon Cho
  • Hong Kum Lee
  • Soon Gyu Hong
Article

Abstract

A Gram-negative, non-motile, catalase- and oxidase- positive, strictly aerobic, and short rod-shaped bacterium that was designated strain KOPRI 25157T was isolated from coastal seawater sample in Antarctica. The temperature and pH ranges for growth on R2A agar were 10–20°C, and 5.0–10.0, respectively. Phylogenetic analyses of the 16S rRNA gene sequence of strain KOPRI 25157T showed it to belong to the family Oxalobacteraceae of the class Betaproteobacteria, and it formed a distinct clade from other recognized members of the family. DNA G + C content was 65.9 mol%. Major ubiquinone was Q-8. Predominant cellular fatty acids were C16:1 ω7c/15 iso 2OH (56.4%) and C16:1 (30.5%). Major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and unknown lipid. On the basis of these data, it is proposed that strain KOPRI 25157T is the representative of a novel genus, for which the name Actimicrobium gen. nov. is proposed in the family Oxalobacteraceae. The type strain for Actimicrobium antarcticum sp. nov. is KOPRI 25157T (=JCM 16673T=KCTC 23040T).

Keywords

Betaproteobacteria Isoprenoid Quinone Major Polar Lipid KCTC 23040T Burkholderiales 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Dr. J. P. Euzéby for help with nomenclature. This study was supported by Korea Polar Research Institute (Grant PE10050).

Supplementary material

284_2011_9962_MOESM1_ESM.pdf (20 kb)
Fig. S1 Two-dimensional thin-layer chromatogram of polar lipids of strain KOPRI 25157T. DPG, Diphosphatidylglycerol; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PS, phosphatidylserine; AL, unknown aminolipids; L, unknown polar lipid. (PDF 19 kb)

References

  1. 1.
    Bowman JP, Sly LI, Hayward AC, Spiegel LY, Stackebrandt E (1993) Telluria mixta (Pseudomonas mixta Bowman, Sly, and Hayward 1988) gen. nov., comb. nov, and Telluria chitinolytica sp. nov., soil-dwelling organisms which actively degrade polysaccharides. Int J Syst Bacteriol 43:120–124PubMedCrossRefGoogle Scholar
  2. 2.
    Choi A, Oh HM, Cho JC (2011) Saccharospirillum aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol (in press)Google Scholar
  3. 3.
    Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261PubMedCrossRefGoogle Scholar
  4. 4.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  5. 5.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  6. 6.
    Fernandes C, Rainey FA, Nobre MF, Pinhal I, Folhas F, Costa MS (2005) Herminiimonas fonticola gen. nov., sp. nov., a Betaproteobacterium isolated from a source of bottled mineral water. Syst Appl Microbiol 28:596–603PubMedCrossRefGoogle Scholar
  7. 7.
    Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  8. 8.
    Garrity GM, Winters M, Searles DB (2001) Taxonomic outline of the procaryotic genera. In: Bergey’s manual of systematic bacteriology, 2nd edn. online release 1.0, Springer, New York. (http://www.cme.msu.edu/bergeys/april2001-genus.pdf)
  9. 9.
    Hiraishi A, Shin YK, Sugiyama J (1997) Proposal to reclassify Zoogloea ramigera IAM 12670 (P. R. Dugan 115) as Duganella zoogloeoides gen. nov., sp. nov. Int J Syst Bacteriol 47:1249–1252PubMedCrossRefGoogle Scholar
  10. 10.
    Kämpfer P, Falsen E, Busse HJ (2008) Naxibacter varians sp. nov. and Naxibacter haematophilus sp. nov., and emended description of the genus Naxibacter. Int J Syst Evol Microbiol 58:1680–1684PubMedCrossRefGoogle Scholar
  11. 11.
    Kämpfer P, Rosselló-Mora R, Hermansson M, Persson F, Huber B, Falsen E, Busse HJ (2007) Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 57:1510–1515PubMedCrossRefGoogle Scholar
  12. 12.
    Kimura M (1980) A sample method for estimation evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  13. 13.
    Komagata K, Suzuki KI (1987) Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206CrossRefGoogle Scholar
  14. 14.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley, New York, pp 115–175Google Scholar
  15. 15.
    Lee YK, Jung HJ, Lee HK (2006) Marine bacteria associated with the Korean brown alga, Undaria pinnatifida. J Microbiol 44:694–698PubMedGoogle Scholar
  16. 16.
    Li WJ, Zhang YQ, Park DJ, Li CT, Xu LH, Kim CJ, Jiang CL (2004) Duganella violaceinigra sp. Nov., a novel mesophilic bacterium isolated from forest soil. Int J Syst Evol Microbiol 54:1811–1814PubMedCrossRefGoogle Scholar
  17. 17.
    Lincoln SP, Fermor TR, Tindall BJ (1999) Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. Int J Syst Bacteriol 49:1577–1589PubMedCrossRefGoogle Scholar
  18. 18.
    Loveland-Curtze J, Miteva VI, Brenchley JE (2009) Herminiimonas glaciei sp. nov., a novel ultramicrobacterium from 3042 m deep Greenland glacial ice. Int J Syst Evol Microbiol 59:1272–1277PubMedCrossRefGoogle Scholar
  19. 19.
    Mesbah M, Premachandran U, Whiman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  20. 20.
    Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  21. 21.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. 22.
    Scola BL, Birtles RJ, Mallet MN, Raoult D (1998) Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36:2847–2852PubMedGoogle Scholar
  23. 23.
    Swofford D (2002) PAUP: phylogenetic analysis using parsimony (and other methods). Sinauer Associates, SunderlandGoogle Scholar
  24. 24.
    Weon HY, Kim BY, Son JA, Jang HB, Hong SK, Go SJ, Kwon SW (2008) Massilia aerilate sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:1422–1425PubMedCrossRefGoogle Scholar
  25. 25.
    Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153PubMedCrossRefGoogle Scholar
  26. 26.
    Yamada Y (1998) Identification of coenzyme Q (ubiquinone) homologs. In: Kurtzman CP, Fell JW (eds) The yeasts–a taxonomic study. Elsevier, Amsterdam, pp 101–102Google Scholar
  27. 27.
    Yokota A, Akagawa-Matsushita M, Hiraishi A, Katayama Y, Urakami T, Yamasato K (1992) Distribution of quinone systems in microorganisms: gram-negative eubacteria. Bull Jpn Fed Cult Coll 8:136–171Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Eun Hye Kim
    • 1
    • 2
  • Hyun-Jeong Jeong
    • 1
  • Yoo Kyoung Lee
    • 1
  • Eun Young Moon
    • 3
  • Jang-Cheon Cho
    • 2
  • Hong Kum Lee
    • 1
  • Soon Gyu Hong
    • 1
  1. 1.Division of Polar Life SciencesKorea Polar Research InstituteIncheonRepublic of Korea
  2. 2.Division of Biology and Ocean SciencesInha UniversityNam-gu, IncheonRepublic of Korea
  3. 3.Institute of MicrobiologySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations