Current Microbiology

, 63:250 | Cite as

Preliminary In Vitro Insights into the Use of Natural Fungal Pathogens of Leaf-cutting Ants as Biocontrol Agents

  • Patricia Folgarait
  • Norma Gorosito
  • Michael Poulsen
  • Cameron R. Currie


Leaf-cutting ants are one of the main herbivores of the Neotropics, where they represent an important agricultural pest. These ants are particularly difficult to control because of the complex network of microbial symbionts. Leaf-cutting ants have traditionally been controlled through pesticide application, but there is a need for alternative, more environmentally friendly, control methods such as biological control. Potential promising biocontrol candidates include the microfungi Escovopsis spp. (anamorphic Hypocreales), which are specialized pathogens of the fungi the ants cultivate for food. These pathogens are suppressed through ant behaviors and ant-associated antibiotic-producing Actinobacteria. In order to be an effective biocontrol agent, Escovopsis has to overcome these defenses. Here, we evaluate, using microbial in vitro assays, whether defenses in the ant-cultivated fungus strain (Leucoagaricus sp.) and Actinobacteria from the ant pest Acromyrmex lundii have the potential to limit the use of Escovopsis in biocontrol. We also explore, for the first time, possible synergistic biocontrol between Escovopsis and the entomopathogenic fungus Lecanicillium lecanii. All strains of Escovopsis proved to overgrow A. lundii cultivar in less than 7 days, with the Escovopsis strain isolated from a different leaf-cutting ant species being the most efficient. Escovopsis challenged with a Streptomyces strain isolated from A. lundii did not exhibit significant growth inhibition. Both results are encouraging for the use of Escovopsis as a biocontrol agent. Although we found that L. lecanii can suppress the growth of the cultivar, it also had a negative impact on Escovopsis, making the success of simultaneous use of these two fungi for biocontrol of A. lundii questionable.


  1. 1.
    Abramowski D, Currie CR, Poulsen M (2011) Caste specialization in behavioral defenses against fungus garden parasites in Acromyrmex octospinosus leaf-cutting ants. Insectes Soc 58:65–75CrossRefGoogle Scholar
  2. 2.
    Agresti A (1991) Categorical data analysis. Wiley, New YorkGoogle Scholar
  3. 3.
    Anjos N, Moreira DDO, Della Lucia TMC (1993) Manejo integrado de formigas cortadeiras em reflorestamentos. In: Della Lucia TMC (ed) As formigas cortadeiras Mina Gerais. Universidade Federal de Viçosa, Brazil, pp 212–241Google Scholar
  4. 4.
    Ayala Zermeño MA, Mier T, Sánchez-Robles J, Toriello C (2005) Variabilidad intraespecífica del crecimiento de Lecanicillium lecanii por efecto de la temperatura. Revista Mexicana de Micología 20:93–97Google Scholar
  5. 5.
    Barke J, Seipkel RF, Grüschow S, Heavens D, Drou N, Bibb MJ, Goss RJM, Yu DW, Hutchings MI (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109PubMedCrossRefGoogle Scholar
  6. 6.
    Bettini S (1978) Arthropod venoms, Chap 25. Springer-Verlag, New York, pp 801–869Google Scholar
  7. 7.
    Bot ANM, Currie CR, Hart AG, Boomsma JJ (2001) Waste management in leafcutting ants. Ethol Ecol Evol 3:225–237CrossRefGoogle Scholar
  8. 8.
    Cafaro MJ, Currie CR (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51:441–446PubMedCrossRefGoogle Scholar
  9. 9.
    Cafaro M, Poulsen M, Little AEF, Gerardo NM, Price S, Wong B, Stuart AE, Larget B, Abbot P, Currie CR (2011) Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc R Soc B. doi:10.1098/rspb.2010.2118
  10. 10.
    Cherret JM (1986) History of the leaf-cutting ant problem. In: Lofgren CS, Vander Meer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, pp 10–17Google Scholar
  11. 11.
    Cherret JM (1986) The economic importance and control of leaf-cutting ants. In: Vinson SB (ed) Economic impact and control of social insects. Praeger, New York, pp 165–192Google Scholar
  12. 12.
    Cortez Madrigal H (2007) Producción de Lecanicillium (=Verticillium) lecanii en diferentes sustratos y patogenicidad. Agr Tec Mex 33:83–87Google Scholar
  13. 13.
    Currie CR (2001) Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia 128:99–106CrossRefGoogle Scholar
  14. 14.
    Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B 268:1033–1039CrossRefGoogle Scholar
  15. 15.
    Currie CR, Mueller UG, Malloch D (1999) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002PubMedCrossRefGoogle Scholar
  16. 16.
    Currie CR, Scott JA, Summerbell RA, Malloch D (1999) Fungus growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704CrossRefGoogle Scholar
  17. 17.
    Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung GH, Spatafora JF, Straus NA (2003) Ancient tripartite coevolution in the attine ant–microbe symbiosis. Science 299:386–388PubMedCrossRefGoogle Scholar
  18. 18.
    Currie CR, Bot ANM, Boomsma JJ (2003) Experimental evidence of a tripartite mutualism: bacteria protect ant fungal gardens from specialized parasites. Oikos 101:91–102CrossRefGoogle Scholar
  19. 19.
    Della Lucia TMC (1993) As formigas cortadeiras. Universidade Federal de Viçosa, Mina Gerais, BrazilGoogle Scholar
  20. 20.
    Della Lucia TMC, Vilela EF (1993) Métodos atuais de controle e perspectivas. In: Della Lucia TMC (ed) As formigas cortadeiras. Universidade Federal de Viçosa, Mina Gerais, Brazil, pp 163–190Google Scholar
  21. 21.
    Elizalde E, Folgarait PJ (2010) Host diversity and environmental variables as determinants of the species richness of the parasitoids of leaf-cutting ants. J Biogeogr 37:2305–2316CrossRefGoogle Scholar
  22. 22.
    Fernández-Marín H, Zimmerman JK, Nash DR, Boomsma JJ, Wcislo WT (2009) Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants. Proc R Soc B 276:2263–2269PubMedCrossRefGoogle Scholar
  23. 23.
    Foguelman D (ed) (2003) Plagas y Enfermedades en Manejo Orgánico: Una Mirada Latinoamericana. IFOAM, AlemaniaGoogle Scholar
  24. 24.
    Follett PA, Duan JJ (1999) Non-target effects of biological control. Kluwer Academic Publishers, DordrechtGoogle Scholar
  25. 25.
    Forest Stewardship Council (2007) FSC Guidance Document. FSC pesticides policy: guidance on implementation. Forest Stewardship Council A.C., Bonn, GermanyGoogle Scholar
  26. 26.
    Ganassi S, Grazioso P, Moretti A, Sabatini MA (2010) Effects of the fungus Lecanicillium lecanii on survival and reproduction of the aphid Schizaphis graminum. Biocontrol 55:299–312CrossRefGoogle Scholar
  27. 27.
    Hajek AE, Goettel MS (2007) Guidelines for evaluating effects of entomopathogens on non-target organisms. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 815–834Google Scholar
  28. 28.
    Hall RA (1981) The fungus Verticillium lecanii as a microbial insecticide against aphids and scales. In: Burges HD (ed) Microbial control of pests and plants disease. Academic Press, New York, pp 483–498Google Scholar
  29. 29.
    Header SR, Wirth R, Hertz H, Spiteller D (2009) Candicin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746CrossRefGoogle Scholar
  30. 30.
    Hokkanen HMT, Zeng QQ, Menzler-Hokkanen I (2003) Environmental impacts of microbial insecticides. Kluwer Academic Publishers, DordrechtGoogle Scholar
  31. 31.
    Hughes WOH, Boomsma JJ (2004) Let your enemy do the work: within-host interactions between two fungal parasites of leaf-cutting ants. Proc R Soc B 271:S104–S106PubMedCrossRefGoogle Scholar
  32. 32.
    Kost C, Lakatos T, Bottcher I, Arendholz WR, Redenbach M, Wirth R (2007) Non-specific association between filamentous bacteria and fungus-growing ants. Naturwissenschaften 94:821–828PubMedCrossRefGoogle Scholar
  33. 33.
    Lima PP (1992) Palestra sobre formigas cortadeiras. Memoria de Reuniao de Especialistas en Controle Alternativo de Cupins e Formigas. Ibama, BrasilGoogle Scholar
  34. 34.
    Little AEF, Murakami T, Mueller UG, Currie CR (2006) Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Proc R Soc Biol Lett 2:12–16Google Scholar
  35. 35.
    Lopez E, Orduz S (2003) Metarhizium anisopliae and Trichoderma viride for control of nests of the fungus-growing ant, Atta cephalotes. Biol Control 27:194–200CrossRefGoogle Scholar
  36. 36.
    Mueller UG, Dash D, Rabeling C, Rodrigues A (2008) Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution 62:2894–2912PubMedCrossRefGoogle Scholar
  37. 37.
    Oh DC, Poulsen M, Currie CR, Clardy J (2009) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–393PubMedCrossRefGoogle Scholar
  38. 38.
    Ortiz A, Orduz S (2000) In vitro evaluation of Trichoderma and Gliocladium antagonism against symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia 150:53–60CrossRefGoogle Scholar
  39. 39.
    Pimentel D, McLaughlin L, Zepp A, Lakitan B, Kraus T, Kleinman P, Vancini F, John Roach W, Graap E, Keeton WS, Selig G (1991) Environmental and economic effects of reducing pesticide use. Bioscience 41:402–409CrossRefGoogle Scholar
  40. 40.
    Poulsen M, Currie CR (2006) Complexity of insect-fungal associations: exploring the influence of microorganisms on attine ant-fungus symbiosis. In: Bourtzis K, Miller T (eds) Insect symbiosis, vol 2. CRC Press, Boca RatonGoogle Scholar
  41. 41.
    Poulsen M, Cafaro MJ, Erhardt D, Little AEF, Gerardo NM, Tebbets B, Klein B, Currie CR (2010) Variation in Pseudonocardia antibiotic defense helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environ Microbiol Rep 2:534–540CrossRefGoogle Scholar
  42. 42.
    Read AF, Taylor LH (2001) The ecology of genetically diverse infections. Science 292:1099–1102PubMedCrossRefGoogle Scholar
  43. 43.
    Reynolds HT, Currie CH (2004) Pathogenicity of Escovopsis weberi: the parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96:955–959PubMedCrossRefGoogle Scholar
  44. 44.
    Siegel S (1976) Estadística no paramétrica aplicada a las ciencias de la conducta. México, TrillasGoogle Scholar
  45. 45.
    Taerum SJ, Cafaro MJ, Little AEF, Schultz TR, Currie CR (2007) Low host-pathogen specificity in the leaf-cutting ant-microbe symbiosis. Proc R Soc B 274:1971–1978PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Patricia Folgarait
    • 1
  • Norma Gorosito
    • 1
  • Michael Poulsen
    • 2
    • 3
  • Cameron R. Currie
    • 2
  1. 1.Centro de Estudios de Investigaciones, Universidad Nacional de QuilmesBernalArgentina
  2. 2.Department of BacteriologyUniversity of WisconsinMadisonUSA
  3. 3.Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagen EastDenmark

Personalised recommendations