Current Microbiology

, Volume 64, Issue 2, pp 164–172 | Cite as

Site-Directed Mutagenesis Studies on the l-Arginine-Binding Sites of Feedback Inhibition in N-Acetyl-l-glutamate Kinase (NAGK) from Corynebacterium glutamicum



Arginine biosynthesis in Corynebacterium glutamicum proceeds via a pathway that is controlled by arginine through feedback inhibition of NAGK, the enzyme that converts N-acetyl-l-glutamate (NAG) to N-acety-l-glutamy-l-phosphate. In this study, the gene argB encoding NAGK from C. glutamicum ATCC 13032 was site-directed, and the l-arginine-binding sites of feedback inhibition in Cglu_NAGK are described. The N-helix and C-terminal residues were first deleted, and the results indicated that they are both necessary for Cglu_NAGK, whereas, the complete N-helix deletion (the front 28 residues) abolished the l-arginine inhibition. Further, we study here the impact on these functions of 12 site-directed mutations affecting seven residues of Cglu_NAGK, chosen on the basis of homology structural alignment. The E19R, H26E, and H268N variants could increase the I0.5 R 50–60 fold, and the G287D and R209A mutants could increase the I0.5 R 30–40 fold. The E281A mutagenesis resulted in the substrate kinetics being greatly influenced. The W23A variant had a lower specific enzyme activity. These results explained that the five amino acid residues (E19, H26, R209, H268, and G287) located in or near N-helix are all essential for the formation of arginine inhibition.


Feedback Inhibition Corynebacterium Glutamicum Specific Enzyme Activity Arginine Biosynthesis Corynebacterium Diphtheriae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the High-tech Research and Development Programs of China (2007AA02Z207), the National Basic Research Program of China (2007CB707804), the National Natural Science Foundation of China (30970056), the Program for New Century Excellent Talents in University (NCET-07-0380, NCET-10-0459), the Fundamental Research Funds for the Central Universities (JUSRP31001), the Program of Introducing Talents of Discipline to Universities (111-2-06), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    Benkert B, Quack N, Schreiber K, Jaensch L, Jahn D, Schobert M (2008) Nitrate-responsive NarX-NarL represses arginine-mediated induction of the Pseudomonas aeruginosa arginine fermentation arcDABC operon. Microbiol SGM 154:3053–3060. doi: 10.1099/mic.0.2008/018929-0 CrossRefGoogle Scholar
  2. 2.
    Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79:471–479. doi: 10.1007/s00253-008-1444-z PubMedCrossRefGoogle Scholar
  3. 3.
    Blombach B, Hans S, Bathe B, Eikmanns BJ (2009) Acetohydroxyacid synthase, a novel target for improvement of l-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:419–427. doi: 10.1128/aem.01844-08 PubMedCrossRefGoogle Scholar
  4. 4.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  5. 5.
    Desper R, Gascuel O (2004) Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol Evol 21(3):587–598. doi: 10.1093/molbev.msh049 PubMedCrossRefGoogle Scholar
  6. 6.
    Elisakova V, Patek M, Holatko J, Nesvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71:207–213. doi: 10.1128/AEM.71.1.207-213.2005 PubMedCrossRefGoogle Scholar
  7. 7.
    Fernandez-Murga ML, Rubio V (2008) Basis of arginine sensitivity of microbial N-acetyl-l-glutamate kinases: mutagenesis and protein engineering study with the Pseudomonas aeruginosa and Escherichia coli enzymes. J Bacteriol 190:3018–3025. doi: 10.1128/jb.01831-07 PubMedCrossRefGoogle Scholar
  8. 8.
    Fernandez-Murga ML, Gil-Ortiz F, Llacer JL, Rubio V (2004) Arginine biosynthesis in Thermotoga maritima: characterization of the arginine-sensitive N-acetyl-l-glutamate kinase. J Bacteriol 186:6142–6149. doi: 10.1128/jb.186.18.6142-6149.2004 PubMedCrossRefGoogle Scholar
  9. 9.
    Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301. doi: 10.1016/j.ymben.2005.05.001 PubMedCrossRefGoogle Scholar
  10. 10.
    Grishin NV (1995) Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites. J Mol Evol 41(5):675–679PubMedCrossRefGoogle Scholar
  11. 11.
    Guillouet S, Rodal A, An GH, Lessard P, Sinskey A, Gorret N (2001) Metabolic redirection of carbon flow toward isoleucine by expressing a catabolic threonine dehydratase in a threonine-overproducing Corynebacterium glutamicum. Appl Microbiol Biotechnol 57:667–673. doi: 10.1007/s00253-001-0829-z PubMedCrossRefGoogle Scholar
  12. 12.
    Haas D, Kurer V, Leisinger T (1972) N-acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Eur J Biochem 31:290–295. doi: 10.1111/j.1432-1033.1972.tb02531.x PubMedCrossRefGoogle Scholar
  13. 13.
    Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25PubMedCrossRefGoogle Scholar
  14. 14.
    Pauwels K, Abadjieva A, Hilven P, Stankiewicz A, Crabeel M (2003) The N-acetylglutamate synthase/N-acetylglutamate kinase metabolon of Saccharomyces cerevisiae allows co-ordinated feedback regulation of the first two steps in arginine biosynthesis. Eur J Biochem 270:1014–1024. doi: 10.1046/j.1432-1033.2003.03477.x PubMedCrossRefGoogle Scholar
  15. 15.
    Rajagopal BS, DePonte J 3rd, Tuchman M, Malamy MH (1998) Use of inducible feedback-resistant N-acetylglutamate synthetase (argA) genes for enhanced arginine biosynthesis by genetically engineered Escherichia coli K-12 strains. Appl Environ Microbiol 64:1805–1811PubMedGoogle Scholar
  16. 16.
    Ramón-Maiques S, Fernández-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V (2006) Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 356:695–713. doi: 10.1016/j.jmb.2005.11.079 PubMedCrossRefGoogle Scholar
  17. 17.
    Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiol 142(Pt 1):99–108. doi: 10.1099/13500872-142-1-99 Google Scholar
  18. 18.
    Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  19. 19.
    Slocum R (2005) Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Phys Biochem 43:729–745. doi: 10.1016/j.plaphy.2005.06.007 CrossRefGoogle Scholar
  20. 20.
    Sun L, Wen X, Tan Y, Li H, Yang X, Zhao Y, Wang B, Cao Q, Niu C, Xi Z (2009) Site-directed mutagenesis and computational study of the Y366 active site in Bacillus subtilis protoporphyrinogen oxidase. Amino Acids 37:523–530. doi: 10.1007/s00726-009-0256-5 PubMedCrossRefGoogle Scholar
  21. 21.
    Utagawa T (2004) Production of arginine by fermentation. J Natr 134:2854–2867Google Scholar
  22. 22.
    Wendisch VF (2006) Genetic regulation of Corynebacterium glutamicum metabolism. J Microbiol Biotechnol 16:999–1009Google Scholar
  23. 23.
    Wendisch V, Glansdorff N, Xu Y (2007) Microbial arginine biosynthesis: pathway, regulation and industrial production. Springer, Heidelberg, pp 219–257. doi: 10.1007/7171_2006_061 Google Scholar
  24. 24.
    Xu H, Dou W, Xu H, Zhang X, Rao Z, Shi Z, Xu Z (2009) A two-stage oxygen supply strategy for enhanced l-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis. Biochem Eng J 43:41–51. doi: 10.1016/j.bej.2008.08.007 CrossRefGoogle Scholar
  25. 25.
    Xu MJ, Rao ZM, Xu H, Lan CY, Dou WF, Zhang XM, Xu HY, Jin JA, Xu ZH (2011) Enhanced production of l-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Appl Biochem Biotechnol 163:707–719. doi: 10.1007/s12010-010-9076-z PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.The Laboratory of Pharmaceutical Engineering, School of Medicine and PharmaceuticsJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations