Advertisement

Current Microbiology

, 63:484 | Cite as

Probiotic Therapy: Immunomodulating Approach Toward Urinary Tract Infection

  • Sarika Amdekar
  • Vinod Singh
  • Desh Deepak Singh
Article

Abstract

Urinary tract infection (UTI) is an extremely common health problem, with an unpredictable history. Members of enterobacteriaceae family such as Escherichia coli, which are normal inhabitants of human intestines, account for the majority of these uncomplicated infections. Rarely, UTI can result from virus or fungus. There is a close correlation between loss of the normal genital microbiota, particularly Lactobacillus species, and an increased incidence of genital and bladder infections. Although antimicrobial agents are generally effective in eradicating these infections, there is a high incidence of recurrence. Use of Lactobacillus species to combat UTI is now giving modern concept of modern genitourinary vaccine with the facts that it not only maintains low pH of the genital area, produces hydrogen peroxide and hinders the growth of E. coli but also activates Toll-like receptor-2 (TLR2), which produces interleukin-10 (IL-10) and myeloid differentiation factor 88 (MyD88). E. coli activates TLR4, which is responsible for the activation of IL-12, extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). This process downregulates inflammatory reactions caused due to pathogens. Current review covers the probiotics-based TLR therapy and shed some knowledge for the use of Lactobacillus species as probiotics.

Keywords

Urinary Tract Infection Lactobacillus Innate Immune System Familial Mediterranean Fever Lactobacillus Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

284_2011_6_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 39 kb)

References

  1. 1.
    Abreu MT, Fukata M, Arditi M (2005) TLR signaling in the gut in health and disease. J Immunol 174:4453–4460PubMedGoogle Scholar
  2. 2.
    Akira S (2001) Toll like receptor and innate immunity. Adv Immunol 78:1–56PubMedCrossRefGoogle Scholar
  3. 3.
    Akira S, Yamamoto M, Takeda K (2003) Role of adapters in Toll-like receptor signaling. Biochem Soc Trans 31(3):637–642PubMedCrossRefGoogle Scholar
  4. 4.
    Amdekar S, Dwivedi D, Roy P, Kushwah S, Singh V (2010) Probiotics: multifarious oral vaccine against infectious traumas. FEMS Immunol Med Microbiol 58(3):1–8Google Scholar
  5. 5.
    Anders H, Patole PS (2005) Toll-like receptors recognize uropathogenic Escherichia coli and trigger inflammation in the urinary tract. Nephrol Dial Transpl 20:1529–1532CrossRefGoogle Scholar
  6. 6.
    Anukam KC, Hayes K, Summers K, Reid G (2009) Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 may help downregulating TNF-α, Il-6, Il-8, Il-10 and IL-12 (p70) in the neurogenic bladder of spinal cord injured patient with urinary tracrt infection: A two case study. Adv Urol. Article ID 680363Google Scholar
  7. 7.
    Armant MA, Fenton MJ (2002) Toll like receptors: a family of pattern recognition receptors in mammals. Genome Biol 3(8):3011.1–3011.6CrossRefGoogle Scholar
  8. 8.
    Bambou JC, Giraud A, Menard S, Begue B, Rakotobe S, Heyman M, Taddei F, Cerf-Bensussan N, Gaboriau-Routhiau V (2004) In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem 279:42984–44292PubMedCrossRefGoogle Scholar
  9. 9.
    Bernet MF, Brassart D, Neeser JR, Servin AL (1994) Lactobacillus acidophilus LA 1 binds to human intestinal lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35:483–489PubMedCrossRefGoogle Scholar
  10. 10.
    Borchert D, Sheridan L, Papatsoris A, Faruqu Z, Barua JM, Junaid I et al (2008) Prevention and treatment of urinary tract infection with probiotics: review and research perspective. Indian J Urol 24:139–144PubMedCrossRefGoogle Scholar
  11. 11.
    Bruce AW, Reid G (2003) Probiotics and the urologist. Can J Urol 270(7230):16–18Google Scholar
  12. 12.
    Cario E, Brown D, McKee M, Lynch-Devaney K, Gerken G, Podolsky DK (2002) Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 160:165–173PubMedCrossRefGoogle Scholar
  13. 13.
    Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1992) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692CrossRefGoogle Scholar
  14. 14.
    Cleveland MG, Gorham JD, Murphy TL, Tuomanen E, Murphy KM (1996) Lipoteichoic acid preparations of gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infect Immunol 64:1906–1912Google Scholar
  15. 15.
    Czaja CA, Stapleton AE, Yarova-Yarovaya Y, Stamm WE (2000). Phase I trail of a Lactobacillus crispatus vaginal suppository for prevention of recurrent urinary tract infection in women. Infectious Dis Obstet Gynecol; Article ID 35387Google Scholar
  16. 16.
    Finer G, Landau D (2004) Pathogenesis of urinary tract infections with normal female anatomy. Lancet Infect Dis 4(10):631–635PubMedCrossRefGoogle Scholar
  17. 17.
    Garcia-Lafuente A, Antolin M, Guarner F, Crespo E, Malagelada JR (2001) Modulation of colonic barrier function by the composition of the commensal flora in the rat. Gut 48:503–507PubMedCrossRefGoogle Scholar
  18. 18.
    Gewirtz AT (2007) TLRs in the Gut. III. Immune responses to flagellin in Crohn’s disease, good, bad, or irrelevant? Am J Physiol Gastrointest Liver Physiol 292:G706–G710PubMedCrossRefGoogle Scholar
  19. 19.
    Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103PubMedCrossRefGoogle Scholar
  20. 20.
    Hopkins PA, Sriskandan S (2005) Mammalian Toll-like receptors: to immunity and beyond. Clin Exp Immunol 140:395–407PubMedCrossRefGoogle Scholar
  21. 21.
    Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752PubMedGoogle Scholar
  22. 22.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedCrossRefGoogle Scholar
  23. 23.
    John A, Catanzaro ND, Green Lisa (1997) Microbial ecology and probiotics in human medicine (Part II). Altern Rev Med 2(4):296–305Google Scholar
  24. 24.
    Kaewnopparat S, Kaewnopparat N (2009) Formulation and evaluation of vaginal suppositories containing Lactobacillus. World Acad Sci Eng Technol 55:640–643Google Scholar
  25. 25.
    Kaminogawa S, Nanno M (2004) Modulation of immune action by food. eCAM 1(3):241–250PubMedGoogle Scholar
  26. 26.
    Kayisli UA, Mahutte NG, Arici A (2002) Uterine chemokines in reproductive physiology and pathology. Am J Reprod Immunol 47:213–221PubMedCrossRefGoogle Scholar
  27. 27.
    Kelly D, Conway S (2005) Bacterial modulation of mucosal innate immunity. Mol Immunol 42:895–901PubMedCrossRefGoogle Scholar
  28. 28.
    Kirschning CJ, Schumann RR (2002) TLR2: cellular sensor for microbial and endogenous molecular patterns. Curr Top Microbiol Immunol 270:121–144PubMedCrossRefGoogle Scholar
  29. 29.
    Kobayashi KS, Flavell RA (2004) Shielding the double-edged sword: negative regulation of the innate immune system. Leukocyte Biol 75:428–433CrossRefGoogle Scholar
  30. 30.
    Koller B, Kappler M, Latzin P, Gaggar A, Schreiner M, Takyar S, Kormann M, Kabesch M, Roos D, Griese M, Hartl D (2008) TLR expression on neutrophils at the pulmonary site of infection: TLR1/TLR2-mediated up-regulation of TLR5 expression in cystic fibrosis lung disease. J Immunol 181:2753–2763PubMedGoogle Scholar
  31. 31.
    Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22(7):2478–2486PubMedGoogle Scholar
  32. 32.
    Levings MK, Bacchetta R, Schulz U, Roncarolo MG (2002) The role of IL-10 and TGF-γ in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 129:263–276PubMedCrossRefGoogle Scholar
  33. 33.
    Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, De Simone C (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121:580–591PubMedCrossRefGoogle Scholar
  34. 34.
    Matzinger P (1994) Tolerance, danger and the extended family. Annu Rev Immunol 12:991–1045PubMedCrossRefGoogle Scholar
  35. 35.
    Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145PubMedCrossRefGoogle Scholar
  36. 36.
    Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2:253–258PubMedCrossRefGoogle Scholar
  37. 37.
    Metchnikoff E (1908) The prolongation of life. Optimistic studies. Putman’s Sons, New York, pp 161–183Google Scholar
  38. 38.
    Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A (1998) The human Toll signaling pathway: divergence of nuclear factor kB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med 187:2097–20101PubMedCrossRefGoogle Scholar
  39. 39.
    Naik S, Kelly EJ, Meijer L, Pettersson S, Sanderson IR (2001) Absence of toll like receptors 4 explains endotoxin hyporesponsiveness in human intestinal epithelium. J Paedatr Gastroenterol Nutr 32:449–453CrossRefGoogle Scholar
  40. 40.
    Osset J, BArtolome RM, Gardia E, Andreu A (2001) Assessment of the capacity of Lactobacillus to inhibit the growth of uropathogen and block their adhesion to vaginal epithelia cells. J Infect Dis 183(3):485–491PubMedCrossRefGoogle Scholar
  41. 41.
    Otte JM, Podolsky DK (2004) Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 286:G613–G626PubMedCrossRefGoogle Scholar
  42. 42.
    Ozen S, Berdeli A, Turel B, Kutlay S, Yalcinkaya F, Arici M, Besbas N, Bakkaloglu A, Yilmaz E (2006) Arg753Gln TLR2 polymorphism in familial Mediterranean fever: linking the environment to the phenotype in a monogenic inflammatory disease. J Rheumatol 33:2498–2500PubMedGoogle Scholar
  43. 43.
    Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088PubMedCrossRefGoogle Scholar
  44. 44.
    Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, Akira S, Takeda K, Lee J, Takabayashi K, Raz E (2004) Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126:520–528PubMedCrossRefGoogle Scholar
  45. 45.
    Raetz CRH, Whitfield Chris (2002) Lipopolysaccharides endotoxins. Annu Rev Biochem 71:635–700PubMedCrossRefGoogle Scholar
  46. 46.
    Rahn DD (2008) Urinary tract infections: contemporary management. Urol Nurs 28(5):333–341PubMedGoogle Scholar
  47. 47.
    Reid G (1999) Potential prevents strategies and therapies in urinary tract infection. World J Urol 17:359–363PubMedCrossRefGoogle Scholar
  48. 48.
    Reid G, Seidenfeld A (1997) Drug resistance amongst uropathogens isolated from women in a suburban population laboratory findings over 7 years. Can J Urol 4(4):432–437PubMedGoogle Scholar
  49. 49.
    Reid G, Chan RCY, Bruce AW, Costerton JW (1985) Prevention of urinary tract infection in rats with indigenous Lactobacillus casei strain. Infect Immun 49(2):320–324PubMedGoogle Scholar
  50. 50.
    Robertson SA, Brannstrom M, Seamark RF (1992) Cytokines in rodent reproduction and the cytokine-endocrine interaction. Curr Opin Immunol 4:585–590PubMedCrossRefGoogle Scholar
  51. 51.
    Salimen S, Ouwehannd AC, Isolauri E (1998) Clinical application of probiotic bacteria. Int Dairy J 8:563–572CrossRefGoogle Scholar
  52. 52.
    Samra KSS, Cenk S, Horu GMG, Beril O (2005) Increasing antimicrobial resistance of Escherichia coli isolates from community acquired UTI during 1998–2003. Manisa Turkey Japan. J Infect Dis 58:159–161Google Scholar
  53. 53.
    Schilling JD, Martin SM, Hunstad DA, Patel KP, Mulvey MA, Justice SS, Lorenz RG, Hultgren SJ (2003) CD14 and Toll like receptor-dependent activation of bladder epithelial cells by lipopolysaccharide and type 1 piliated Escherichia coli. Infect Immun 71:1470–1480PubMedCrossRefGoogle Scholar
  54. 54.
    Schmitt C, Sobel JD, Meriwether C (1992) Bacterial vaginosis: treatment with clindamycin cream versus oral metronidazole. Obstet Gynecol 79(6):1020–1023PubMedGoogle Scholar
  55. 55.
    Singh V, Singh K, Amdekar S, Singh DD, Tripathi P, Sharma GL, Yadav H (2008) Innate and specific gut-associated immunity and microbial Interference. FEMS Immunol Med Microbiol 55(1):6–12PubMedCrossRefGoogle Scholar
  56. 56.
    Smith RD, Yago M, Millar M, Coast J (2006) A macroeconomic approach to evaluating policies to contain antimicrobial resistance: a case study of methicillin resistant Staphylococcus aureus (MRSA). Appl Health Econ Health Pol 5:55–65CrossRefGoogle Scholar
  57. 57.
    Spiegel CA, Amsel RA, Eschenbach D, Schoenknecht F, Holmes KK (1980) Anaerobic bacteria in nonspecific vaginitis. N Engl J Med 303:601–607PubMedCrossRefGoogle Scholar
  58. 58.
    Strus M, Kucharska A, Kukl G, Brzychczy-Wloch M, Maresz K, Heczko PB (2005) The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect Dis Obstetr Gynecol 13(2):69–75CrossRefGoogle Scholar
  59. 59.
    Suzuki M, Hisamatsu T, Podolsky DK (2003) Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular toll like receptor 4-MD-2 complex. Infect Immun 7:3503–3511CrossRefGoogle Scholar
  60. 60.
    Svanborg C, Godaly G (1997) Bacterial virulence in urinary tract infection. Infect Dis Clin North Am 11:513–529PubMedCrossRefGoogle Scholar
  61. 61.
    Svanborg C, Bergsten G, Fischer H, Godaly G, Gustafsson M, Karpman D, Lundstedt AC, Ragnarsdottir B, Svensson M, Wullt B (2003) Uropathogenic Escherichia coli as a model of host parasite interaction. Curr Opin Microbiol 9:33–39CrossRefGoogle Scholar
  62. 62.
    Szebeni B, Veres G, Dezsofi A, Rusai K, Vannay A, Mraz M, Majorova E, Arato A (2008) Increased expression of Toll-like receptor TLR2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin Exp Immunol 151:34–41PubMedCrossRefGoogle Scholar
  63. 63.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376PubMedCrossRefGoogle Scholar
  64. 64.
    Takeuchi O, Hoshino K, Akira S (2000) Cutting edge: LR-2 deficient and MyD88- deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165:5392–5396PubMedGoogle Scholar
  65. 65.
    Triantafilou M, Triantafilou K (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23:301–304PubMedCrossRefGoogle Scholar
  66. 66.
    Varoga D, Paulsen F, Mentlein R, Fay J, Kurz B, Schütz R, Wruck C, Goldring MB, Pufe T (2006) TLR2-mediated induction of vascular endothelial growth factor (VEGF) in cartilage in septic joint disease. J Pathol 210:315–324PubMedCrossRefGoogle Scholar
  67. 67.
    Velraeds MM, Van der Mei HC, Reid G, Busscher HJ (2009) Inhibition of initial adhesion of uropathogenic Enterococcus faeclis by biosurfactants from Lactobacillus isolates. Appl Environ Microbiol 62(6):1958–1963Google Scholar
  68. 68.
    Wilson M, Seymour R, Henderson B (1998) Bacterial perturbation of cytokine networks. Infect Immun 66:2401–2409PubMedGoogle Scholar
  69. 69.
    Xia Y, Yamagata K, Krukoff TL (2006) Differential expression of the CD14/TLR4 complex and inflammatory signaling molecules following i.c.v. administration of LPS. Brain Res 1095:85–95PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sarika Amdekar
    • 1
  • Vinod Singh
    • 1
  • Desh Deepak Singh
    • 2
  1. 1.Department of MicrobiologyBarkatullah UniversityBhopalIndia
  2. 2.Department of VirologyCSJM Medical UniversityLukhnowIndia

Personalised recommendations