Current Microbiology

, 63:470 | Cite as

Polyphosphate Deficiency Affects the Sliding Motility and Biofilm Formation of Mycobacterium smegmatis

  • Tingyu Shi
  • Tiwei Fu
  • Jianping Xie


Inorganic polyphosphate (polyP) is a ubiquitous linear polymer of hundreds of orthophosphate (Pi) residues linked by ATP-like, high-energy, phosphoanhydride bonds. The gene Rv1026 in Mycobacterium tuberculosis encodes a putative exopolyphosphatase which progressively hydrolyzes the terminal residues of polyP to liberate Pi. Rv1026 was cloned into the expressive plasmid pMV261. The resulting plasmid pRv1026 and the plasmid pMV261 were transformed into M. smegmatis strain mc2155 by electroporation. The recombinant M. smegmatis (pRv1026) showed relatively decreased polyP concentration and a phenotype different from the M. smegmatis (pMV261) in sliding motility and biofilm formation. The surfactant Tween 80 can enhance this effect on the sliding motility and biofilm formation of M. smegmatis. There are four different peaks between the gas chromatography of cellular wall fatty acid of the M. smegmatis (pRv1026) and the M. smegmatis (pMV261). These results indicate that polyP deficiency can affect the fatty acid composition of cellular wall and these alteration of cell wall might elucidate the reductive ability of strains to slide and form biofilm. This investigation provides novel recognition about the role of Rv1026, which provides novel clues for further study on the physiological role of Rv1026 in M. tuberculosis.


Mycobacterium Malachite Green Mycobacterium Smegmatis Strain Mc2155 Cell Surface Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The study is Supported by the National key infectious disease project (No. 2008ZX10003-006, No. 2008ZX10003-001), national natural science foundation (No. 81071316,90813019), Excellent PhD thesis fellowship of southwest university (No. kb2009010, No. ky2009009), The Fundamental Research Funds for the Central Universities (XDJK2009A003) and Natural Science Foundation Project of CQ CSTC (CSTC, 2010BB5002).


  1. 1.
    Andreu N, Soto CY, Roca I, Martin C, Gibert I (2004) Mycobacterium smegmatis displays the Mycobacterium tuberculosis virulence-related neutral red character when expressing the Rv0577 gene. FEMS Microbiol Lett 231:283–289PubMedCrossRefGoogle Scholar
  2. 2.
    Brown MR, Kornberg A (2008) The long and short of it—polyphosphate, PPK and bacterial survival. Trends Biochem Sci 33:284–290PubMedCrossRefGoogle Scholar
  3. 3.
    Castuma CE, Huang R, Kornberg A, Reusch RN (1995) Inorganic polyphosphates in the acquisition of competence in Escherichia coli. J Biol Chem 270:12980–12983PubMedCrossRefGoogle Scholar
  4. 4.
    Chavez FP, Mauriaca C, Jerez CA (2009) Constitutive and regulated expression vectors to construct polyphosphate deficient bacteria. BMC Res Notes 2:50PubMedCrossRefGoogle Scholar
  5. 5.
    Chen JM, German GJ, Alexander DC, Ren H, Tan T, Liu J (2005) Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol 188:633–641CrossRefGoogle Scholar
  6. 6.
    Chen JM, German GJ, Alexander DC, Ren H, Tan T, Liu J (2006) Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol 188:633–641PubMedCrossRefGoogle Scholar
  7. 7.
    Crooke E, Akiyama M, Rao NN, Kornberg A (1994) Genetically altered levels of inorganic polyphosphate in Escherichia coli. J Biol Chem 269:6290–6295PubMedGoogle Scholar
  8. 8.
    Fraley CD, Rashid MH, Lee SS, Gottschalk R, Harrison J, Wood PJ et al (2007) A polyphosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects. Proc Natl Acad Sci USA 104:3526–3531PubMedCrossRefGoogle Scholar
  9. 9.
    Gopalaswamy R, Narayanan S, Jacobs WR Jr, Av-Gay Y (2008) Mycobacterium smegmatis biofilm formation and sliding motility are affected by the serine/threonine protein kinase PknF. FEMS Microbiol Lett 278:121–127PubMedCrossRefGoogle Scholar
  10. 10.
    Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36:478–503PubMedGoogle Scholar
  11. 11.
    Jagannathan V, Kaur P, Datta S (2010) Polyphosphate kinase from M. tuberculosis: an interconnect between the genetic and biochemical role. PLoS One 5:e14336PubMedCrossRefGoogle Scholar
  12. 12.
    Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125PubMedCrossRefGoogle Scholar
  13. 13.
    Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF (2009) Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum. Appl Environ Microbiol 75:3161–3170PubMedCrossRefGoogle Scholar
  14. 14.
    Martinez A, Torello S, Kolter R (1999) Sliding motility in mycobacteria. J Bacteriol 181:7331–7338PubMedGoogle Scholar
  15. 15.
    McGrath JW, Quinn JP (2000) Intracellular accumulation of polyphosphate by the yeast Candida humicola G-1 in response to acid pH. Appl Environ Microbiol 66:4068–4073PubMedCrossRefGoogle Scholar
  16. 16.
    Nguyen HT, Wolff KA, Cartabuke RH, Ogwang S, Nguyen L (2010) A lipoprotein modulates activity of the MtrAB two-component system to provide intrinsic multidrug resistance, cytokinetic control and cell wall homeostasis in Mycobacterium. Mol Microbiol 76:348–364PubMedCrossRefGoogle Scholar
  17. 17.
    O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79PubMedCrossRefGoogle Scholar
  18. 18.
    Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873PubMedCrossRefGoogle Scholar
  19. 19.
    Ojha A, Hatfull GF (2007) The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol Microbiol 66:468–483PubMedCrossRefGoogle Scholar
  20. 20.
    Ortalo-Magne A, Lemassu A, Laneelle MA, Bardou F, Silve G, Gounon P et al (1996) Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 178:456–461PubMedGoogle Scholar
  21. 21.
    Rao NN, Gomez-Garcia MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647PubMedCrossRefGoogle Scholar
  22. 22.
    Rao NN, Kornberg A (1996) Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J Bacteriol 178:1394–1400PubMedGoogle Scholar
  23. 23.
    Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:4885–4890PubMedCrossRefGoogle Scholar
  24. 24.
    Rashid MH, Rao NN, Kornberg A (2000) Inorganic polyphosphate is required for motility of bacterial pathogens. J Bacteriol 182:225–227PubMedCrossRefGoogle Scholar
  25. 25.
    Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH et al (2000) Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:9636–9641PubMedCrossRefGoogle Scholar
  26. 26.
    Recht J, Kolter R (2001) Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol 183:5718–5724PubMedCrossRefGoogle Scholar
  27. 27.
    Recht J, Martinez A, Torello S, Kolter R (2000) Genetic analysis of sliding motility in Mycobacterium smegmatis. J Bacteriol 182:4348–4351PubMedCrossRefGoogle Scholar
  28. 28.
    Reusch RN (1999) Polyphosphate/poly-(R)-3-hydroxybutyrate) ion channels in cell membranes. Prog Mol Subcell Biol 23:151–182PubMedCrossRefGoogle Scholar
  29. 29.
    Reusch RN (2000) Transmembrane ion transport by polyphosphate/poly-(R)-3-hydroxybutyrate complexes. Biochemistry (Mosc) 65:280–295Google Scholar
  30. 30.
    Rose L, Kaufmann SH, Daugelat S (2004) Involvement of Mycobacterium smegmatis undecaprenyl phosphokinase in biofilm and smegma formation. Microbes Infect 6:965–971PubMedCrossRefGoogle Scholar
  31. 31.
    Shi X, Rao NN, Kornberg A (2004) Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. Proc Natl Acad Sci USA 101:17061–17065PubMedCrossRefGoogle Scholar
  32. 32.
    Shiba T, Tsutsumi K, Yano H, Ihara Y, Kameda A, Tanaka K et al (1997) Inorganic polyphosphate and the induction of rpoS expression. Proc Natl Acad Sci USA 94:11210–11215PubMedCrossRefGoogle Scholar
  33. 33.
    Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT et al (1991) New use of BCG for recombinant vaccines. Nature 351:456–460PubMedCrossRefGoogle Scholar
  34. 34.
    Sureka K, Dey S, Datta P, Singh AK, Dasgupta A, Rodrigue S et al (2007) Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol 65:261–276PubMedCrossRefGoogle Scholar
  35. 35.
    Sureka K, Sanyal S, Basu J, Kundu M (2009) Polyphosphate kinase 2: a modulator of nucleoside diphosphate kinase activity in mycobacteria. Mol Microbiol 74:1187–1197PubMedCrossRefGoogle Scholar
  36. 36.
    Tsutsumi K, Munekata M, Shiba T (2000) Involvement of inorganic polyphosphate in expression of SOS genes. Biochim Biophys Acta 1493:73–81PubMedGoogle Scholar
  37. 37.
    Tunpiboonsak S, Mongkolrob R, Kitudomsub K, Thanwatanaying P, Kiettipirodom W, Tungboontina Y et al (2010) Role of a Burkholderia pseudomallei polyphosphate kinase in an oxidative stress response, motilities, and biofilm formation. J Microbiol 48:63–70PubMedCrossRefGoogle Scholar
  38. 38.
    Varela C, Mauriaca C, Paradela A, Albar JP, Jerez CA, Chavez FP (2011) New structural and functional defects in polyphosphate deficient bacteria: a cellular and proteomic study. BMC Microbiol 10:7CrossRefGoogle Scholar
  39. 39.
    Werner TP, Amrhein N, Freimoser FM (2005) Novel method for the quantification of inorganic polyphosphate (iPoP) in Saccharomyces cerevisiae shows dependence of iPoP content on the growth phase. Arch Microbiol 184:129–136PubMedCrossRefGoogle Scholar
  40. 40.
    Yang ZX, Zhou YN, Yang Y, Jin DJ (2011) Polyphosphate binds to the principal sigma factor of RNA polymerase during starvation response in Helicobacter pylori. Mol Microbiol 77:618–627CrossRefGoogle Scholar
  41. 41.
    Zambrano MM, Kolter R (2005) Mycobacterial biofilms: a greasy way to hold it together. Cell 123:762–764PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang H, Gomez-Garcia MR, Brown MR, Kornberg A (2005) Inorganic polyphosphate in Dictyostelium discoideum: influence on development, sporulation, and predation. Proc Natl Acad Sci USA 102:2731–2735PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges AreaSchool of Life Sciences, Southwest UniversityChongqingChina

Personalised recommendations