Advertisement

Current Microbiology

, Volume 62, Issue 3, pp 1081–1089 | Cite as

Characterization and Transfer of Antibiotic Resistance in Lactic Acid Bacteria from Fermented Food Products

  • Muhammad Nawaz
  • Juan Wang
  • Aiping Zhou
  • Chaofeng Ma
  • Xiaokang Wu
  • John E. Moore
  • B. Cherie Millar
  • Jiru XuEmail author
Article

Abstract

The study provides phenotypic and molecular analyses of the antibiotic resistance in lactic acid bacteria (LAB) from fermented foods in Xi’an, China. LAB strains (n = 84) belonging to 16 species of Lactobacillus (n = 73), and Streptococcus thermophilus (n = 11) were isolated and identified by sequencing their 16S rRNA gene. All strains were susceptible to ampicillin, bacitracin, and cefsulodin, and intrinsically resistant to nalidixic acid, kanamycin, and vancomycin (except L. bulgaricus, L. acidophilus, and S. thermophilus, which were susceptible to vancomycin). Some strains had acquired resistance for penicillin (n = 2), erythromycin (n = 9), clindamycin (n = 5), and tetracycline (n = 14), while resistance to gentamycin, ciprofloxacin, streptomycin, and chloramphenicol was species dependant. Minimum inhibitory concentrations presented in this study will help to review microbiological breakpoints for some of the species of Lactobacillus. The erm(B) gene was detected from two strains of each of L. fermentum and L. vaginalis, and one strain of each of L. plantarum, L. salivarius, L. acidophilus, L. animalis, and S. thermophilus. The tet genes were identified from 12 strains of lactobacilli from traditional foods. This is the first time, the authors identified tet(S) gene from L. brevis and L. kefiri. The erm(B) gene from L. fermentum NWL24 and L. salivarius NWL33, and tet(M) gene from L. plantarum NWL22 and L. brevis NWL59 were successfully transferred to Enterococcus faecalis 181 by filter mating. It was concluded that acquired antibiotic resistance is well dispersed in fermented food products in Xi’an, China and its transferability to other genera should be monitored closely.

Keywords

Lactobacillus Erythromycin Lactic Acid Bacterium Nalidixic Acid Bacitracin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by higher education commission (HEC) of Pakistan.

References

  1. 1.
    Aarestrup FM, Agerso Y, Gerner-Smidt P et al (2000) Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 37:127–137PubMedCrossRefGoogle Scholar
  2. 2.
    Ammor MS, Florez AB, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570PubMedCrossRefGoogle Scholar
  3. 3.
    Aquilanti L, Garofalo C, Osimani A et al (2007) Isolation and molecular characterization of antibiotic-resistant lactic acid bacteria from poultry and swine meat products. J Food Prot 70:557–565PubMedGoogle Scholar
  4. 4.
    Belletti N, Gatti M, Bottari B et al (2009) Antibiotic resistance of lactobacilli isolated from two italian hard cheeses. J Food Prot 72:2162–2169PubMedGoogle Scholar
  5. 5.
    Cataloluk O, Gogebakan B (2004) Presence of drug resistance in intestinal lactobacilli of dairy and human origin in Turkey. FEMS Microbiol Lett 236:7–12PubMedGoogle Scholar
  6. 6.
    Charteris WP, Kelly PM, Morelli L et al (1998) Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Lett Appl Microbiol 26:333–337PubMedCrossRefGoogle Scholar
  7. 7.
    Charteris WP, Kelly PM, Morelli L et al (1998) Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot 61:1636–1643PubMedGoogle Scholar
  8. 8.
    Charteris WP, Kelly PM, Morelli L et al (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768PubMedCrossRefGoogle Scholar
  9. 9.
    Coton M, Berthier F, Coton E (2008) Rapid identification of the three major species of dairy obligate heterofermenters Lactobacillus brevis, Lactobacillus fermentum and Lactobacillus parabuchneri by species-specific duplex PCR. FEMS Microbiol Lett 284:150–157PubMedCrossRefGoogle Scholar
  10. 10.
    Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82:1–11PubMedCrossRefGoogle Scholar
  11. 11.
    Delgado S, Florez AB, Mayo B (2005) Antibiotic susceptibility of Lactobacillus and Bifidobacterium species from the human gastrointestinal tract. Curr Microbiol 50:202–207PubMedCrossRefGoogle Scholar
  12. 12.
    Devirgiliis C, Coppola D, Barile S et al (2009) Characterization of the Tn916 conjugative transposon in a food-borne strain of Lactobacillus paracasei. Appl Environ Microbiol 75:3866–3871PubMedCrossRefGoogle Scholar
  13. 13.
    Dubernet S, Desmasures N, Gueguen M (2002) A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiol Lett 214:271–275PubMedCrossRefGoogle Scholar
  14. 14.
    EFSA (2007) Opinion of the scientific committee on a request from EFSA on the introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. The EFSA Journal 187:1–16Google Scholar
  15. 15.
    EFSA (2008) Technical guidance prepared by the panel on additives and products or substances used in animal feed (FEEDAP) on the update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. The EFSA Journal 732:1–15Google Scholar
  16. 16.
    Egervarn M, Danielsen M, Roos S et al (2007) Antibiotic susceptibility profiles of Lactobacillus reuteri and Lactobacillus fermentum. J Food Prot 70:412–418PubMedGoogle Scholar
  17. 17.
    Egervarn M, Roos S, Lindmark H (2009) Identification and characterization of antibiotic resistance genes in Lactobacillus reuteri and Lactobacillus plantarum. J Appl Microbiol 107:1658–1668PubMedCrossRefGoogle Scholar
  18. 18.
    Feld L, Bielak E, Hammer K et al (2009) Characterization of a small erythromycin resistance plasmid pLFE1 from the food-isolate Lactobacillus plantarum M345. Plasmid 61:159–170PubMedCrossRefGoogle Scholar
  19. 19.
    Florez AB, Delgado S, Mayo B (2005) Antimicrobial susceptibility of lactic acid bacteria isolated from a cheese environment. Can J Microbiol 51:51–58PubMedCrossRefGoogle Scholar
  20. 20.
    Florez AB, Egervarn M, Danielsen M et al (2006) Susceptibility of Lactobacillus plantarum strains to six antibiotics and definition of new susceptibility-resistance cutoff values. Microb Drug Resist 12:252–256PubMedCrossRefGoogle Scholar
  21. 21.
    Fons M, Hege T, Ladire M et al (1997) Isolation and characterization of a plasmid from Lactobacillus fermentum conferring erythromycin resistance. Plasmid 37:199–203PubMedCrossRefGoogle Scholar
  22. 22.
    Ge B, Jiang P, Han F et al (2007) Identification and antimicrobial susceptibility of lactic acid bacteria from retail fermented foods. J Food Prot 70:2606–2612PubMedGoogle Scholar
  23. 23.
    Gevers D, Danielsen M, Huys G et al (2003) Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Appl Environ Microbiol 69:1270–1275PubMedCrossRefGoogle Scholar
  24. 24.
    Gevers D, Huys G, Swings J (2003) In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol Lett 225:125–130PubMedCrossRefGoogle Scholar
  25. 25.
    Gfeller KY, Roth M, Meile L et al (2003) Sequence and genetic organization of the 19.3-kb erythromycin- and dalfopristin-resistance plasmid pLME300 from Lactobacillus fermentum ROT1. Plasmid 50:190–201PubMedCrossRefGoogle Scholar
  26. 26.
    Hummel AS, Hertel C, Holzapfel WH et al (2007) Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 73:730–739PubMedCrossRefGoogle Scholar
  27. 27.
    Huys G, D’Haene K, Swings J (2006) Genetic basis of tetracycline and minocycline resistance in potentially probiotic Lactobacillus plantarum strain CCUG 43738. Antimicrob Agents Chemother 50:1550–1551PubMedCrossRefGoogle Scholar
  28. 28.
    Jacobsen L, Wilcks A, Hammer K et al (2007) Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2–2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 59:158–166PubMedCrossRefGoogle Scholar
  29. 29.
    Kastner S, Perreten V, Bleuler H et al (2006) Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst Appl Microbiol 29:145–155PubMedCrossRefGoogle Scholar
  30. 30.
    Klare I, Konstabel C, Muller-Bertling S et al (2005) Evaluation of new broth media for microdilution antibiotic susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bifidobacteria. Appl Environ Microbiol 71:8982–8986PubMedCrossRefGoogle Scholar
  31. 31.
    Klare I, Konstabel C, Werner G et al (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59:900–912PubMedCrossRefGoogle Scholar
  32. 32.
    Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105:281–295PubMedCrossRefGoogle Scholar
  33. 33.
    Mayrhofer S, van Hoek AH, Mair C et al (2010) Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants. Int J Food Microbiol 144(1):81–87PubMedCrossRefGoogle Scholar
  34. 34.
    Mazel D, Davies J (1999) Antibiotic resistance in microbes. Cell Mol Life Sci 56:742–754PubMedCrossRefGoogle Scholar
  35. 35.
    Ouoba LI, Lei V, Jensen LB (2008) Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Int J Food Microbiol 121:217–224PubMedCrossRefGoogle Scholar
  36. 36.
    Perez Pulido R, Omar NB, Lucas R et al (2005) Resistance to antimicrobial agents in lactobacilli isolated from caper fermentations. Antonie Van Leeuwenhoek 88:277–281PubMedCrossRefGoogle Scholar
  37. 37.
    Relman DA, Loutit JS, Schmidt TM et al (1990) The agent of bacillary angiomatosis. An approach to the identification of uncultured pathogens. N Engl J Med 323:1573–1580PubMedCrossRefGoogle Scholar
  38. 38.
    Rojo-Bezares B, Saenz Y, Poeta P et al (2006) Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int J Food Microbiol 111:234–240PubMedCrossRefGoogle Scholar
  39. 39.
    Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416PubMedCrossRefGoogle Scholar
  40. 40.
    Sutcliffe J, Grebe T, Tait-Kamradt A et al (1996) Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother 40:2562–2566PubMedGoogle Scholar
  41. 41.
    Temmerman R, Pot B, Huys G et al (2003) Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int J Food Microbiol 81:1–10PubMedCrossRefGoogle Scholar
  42. 42.
    Teuber M (2001) Veterinary use and antibiotic resistance. Curr Opin Microbiol 4:493–499PubMedCrossRefGoogle Scholar
  43. 43.
    Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76:115–137PubMedCrossRefGoogle Scholar
  44. 44.
    Xu J, Smyth CL, Buchanan JA et al (2004) Employment of 16 S rDNA gene sequencing techniques to identify culturable environmental eubacteria in a tertiary referral hospital. J Hosp Infect 57:52–58PubMedCrossRefGoogle Scholar
  45. 45.
    Zhou JS, Pillidge CJ, Gopal PK et al (2005) Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol 98:211–217PubMedCrossRefGoogle Scholar
  46. 46.
    Zonenschain D, Rebecchi A, Morelli L (2009) Erythromycin- and tetracycline-resistant lactobacilli in Italian fermented dry sausages. J Appl Microbiol 107:1559–1568PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Muhammad Nawaz
    • 1
  • Juan Wang
    • 1
  • Aiping Zhou
    • 1
  • Chaofeng Ma
    • 1
    • 2
  • Xiaokang Wu
    • 1
  • John E. Moore
    • 3
  • B. Cherie Millar
    • 3
  • Jiru Xu
    • 1
    Email author
  1. 1.Department of Immunology and Pathogenic Biology, Molecular Bacteriology Laboratory, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of MedicineXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Center for Disease Control and Prevention of Xi’anXi’anPeople’s Republic of China
  3. 3.Department of Bacteriology, Northern Ireland Public Health LaboratoryBelfast City HospitalBelfastUK

Personalised recommendations