Current Microbiology

, Volume 62, Issue 1, pp 313–319 | Cite as

Prevalence and Concentration of Non-tuberculous Mycobacteria in Cooling Towers by Means of Quantitative PCR: A Prospective Study

  • Bárbara Adrados
  • Esther Julián
  • Francesc Codony
  • Eduard Torrents
  • Marina Luquin
  • Jordi Morató
Article

Abstract

There is an increasing level of interest in non-tuberculous mycobacteria (NTM) due to the increasing reported rates of diseases caused by them. Although it is well known that NTM are widely distributed in the environment it is necessary to identify its reservoirs to prevent possible infections. In this study, we aimed to investigate the occurrence and levels of NTM in cooling towers to provide evidences for considering these settings as possible sources of respiratory infections. In the current study, we detected and quantified the presence of NTM by means of a rapid method in water samples taken from 53 cooling towers of an urban area (Barcelona, Spain). A genus-specific quantitative PCR (Q-PCR) assay with a quantification limit (QL) of 500 cells l−1 was used. 56% (30) of samples were positive with a concentration range from 4.6 × 103 to 1.79 × 106 cells l−1. In some cases (9/30), samples were positive but with levels below the QL. The colonization rate confirmed that cooling towers could be considered as a potential reservoir for NTM. This study also evaluated Q-PCR as a useful method to detect and quantify NTM in samples coming from environmental sources.

Notes

Acknowledgements

We thank Dr. Enrico Tortoli (Regional Mycobacteria Reference Centre, Florence, Italy) and Dr. Núria Martin-Casabona (Vall d’Hebrón Hospital, Barcelona, Spain) for providing M. palustre and M. xenopi clinical isolates, respectively. We also thank Dr. Laura Villanueva (NIOZ Royal Netherlands Institute for Sea Research, The Netherlands) for critical revision of the manuscript. This work was supported by the Ministerio de Ciencia e Innovación with grant CTM2005-06457-C05-05/TECNO to JM, PI081062 grant to ET, SAF2006-05868 grant to EJ, and by 2009SGR-00108 grant to EJ and ML. ET and BA were supported by Ramon y Cajal and by FPI program (Ministerio de Ciencia e Innovación), respectively.

References

  1. 1.
    Angenent LT, Kelley ST, St Amand A et al (2005) Molecular identification of potential pathogens in water and air of a hospital therapy pool. Proc Natl Acad Sci USA 102(13):4860–4865CrossRefPubMedGoogle Scholar
  2. 2.
    Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi: 10.1093/nar/25.17.3389 CrossRefPubMedGoogle Scholar
  3. 3.
    Bartram J, Bentham R, Briand E et al (2007) Legionella and the prevention of legionellosis. In: Approaches to risk management. World Health Organization. ISBN 92 4 156297 8Google Scholar
  4. 4.
    Black W, Berk SG (2003) Cooling towers—a potential environmental source of slow-growing mycobacterial species. AIHA J 64:238–242CrossRefGoogle Scholar
  5. 5.
    Cook KL, Britt JS (2007) Optimization of methods for detecting Mycobacterium avium subsp. paratuberculosis in environmental samples using quantitative, real-time PCR. J Microbiol Methods 69:154–160CrossRefPubMedGoogle Scholar
  6. 6.
    de Groote MA, Huitt G (2006) Infections due to rapidly growing mycobacteria. Clin Infect Dis 42:1756–1763CrossRefPubMedGoogle Scholar
  7. 7.
    Ding L, Lai C, Lee L et al (2006) Disease caused by non-tuberculous mycobacteria in a university hospital in Taiwan, 1997–2003. Epidemiol Infect 134:1060–1067CrossRefPubMedGoogle Scholar
  8. 8.
    Falkinham JO III (2003) Mycobacterial aerosols and respiratory disease. Emerg Infect Dis 9:763–767PubMedGoogle Scholar
  9. 9.
    Falkinham JO (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107:356–367CrossRefPubMedGoogle Scholar
  10. 10.
    Field S, Cowie RL (2006) Lung disease due to the more common nontuberculous mycobacteria. Chest 129:1653–1672CrossRefPubMedGoogle Scholar
  11. 11.
    Ford T, Hermon-Taylor J, Nichols G (2004) Approaches to risk management in priority setting. In: Bartram J, Cotruvo JA, Dufour A, Rees G, Pedley S et al (eds) Pathogenic mycobacteria in water: a guide to public health consequences. Monitoring and management. World Health Organization, GenevaGoogle Scholar
  12. 12.
    Glassroth J (2008) Pulmonary disease due to nontuberculous mycobacteria. Chest 133:243–251CrossRefPubMedGoogle Scholar
  13. 13.
    Griffith DE, Aksamit T, Brown-Elliot BA et al (2007) An official ATS/IDSA statement: diagnosis, treatment and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416CrossRefPubMedGoogle Scholar
  14. 14.
    Khan IU, Yadav JS (2004) Real-time PCR for genus-specific detection and quantification of culturable and non-culturable mycobacteria and pseudomonads in metalworking fluids. Mol Cell Probes 18:67–73CrossRefPubMedGoogle Scholar
  15. 15.
    Marras TK, Chedore P, Ying et al (2007) Isolation prevalence of pulmonary non-tuberculous mycobacteria in Ontario, 1997–2003. Thorax 62:661–666CrossRefPubMedGoogle Scholar
  16. 16.
    Martin-Casabona N, Bahrmand AR, Bennedsen et al (2004) Non-tuberculous mycobacteria: patterns of isolation. A multi-country retrospective survey. Int J Tuberc Lung Dis 8:1186–1193PubMedGoogle Scholar
  17. 17.
    Nwachcuku N, Gerba CP (2004) Emerging waterborne pathogens: can we kill them all? Curr Opin Biotechnol 15(3):175–180CrossRefPubMedGoogle Scholar
  18. 18.
    Pagnier I, Merchat M, La Scola B (2009) Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control. Future Microbiol 4(5):615–629CrossRefPubMedGoogle Scholar
  19. 19.
    Pagnier I, Merchat M, Raoult D, La Scola B (2009) Emerging mycobacteria spp. in cooling towers. Emerg Infect Dis 15:121–122CrossRefPubMedGoogle Scholar
  20. 20.
    Park H, Jang H, Kim C et al (2000) Detection and identification of mycobacteria by amplification of the internal transcribed spacer regions with genus-and species-specific PCR primers. J Clin Microbiol 38:4080–4085PubMedGoogle Scholar
  21. 21.
    Parker BC, Ford MA, Grufh H et al (1983) Epidemiology of infection by nontuberculous mycobacteria: IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters. Am Rev Respir Dis 128:652–656PubMedGoogle Scholar
  22. 22.
    Rasmussen R (2001) Quantification on the LightCycler. In: Witwe C, Nakagawara K, Meuer S (eds) Rapid cycler real-time PCR, methods and applications. Springer, Heidelberg, pp 21–34Google Scholar
  23. 23.
    Richardson ET, Samson D, Banaei N (2009) Rapid Identification of Mycobacterium tuberculosis and nontuberculous mycobacteria by multiplex, real-time PCR. J Clin Microbiol 47:1497–1502CrossRefPubMedGoogle Scholar
  24. 24.
    September SM, Brözel VS, Venter SN (2004) Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Appl Environ Microbiol 70:7571–7573CrossRefPubMedGoogle Scholar
  25. 25.
    Shelton BG, Flanders WD, Morris GK (1999) Mycobacterium sp. as a possible cause of hypersensitivity pneumonitis in machine workers. Emerg Infect Dis 5:270–273CrossRefPubMedGoogle Scholar
  26. 26.
    Skinner MA, Yuan S, Prestidge R et al (1997) Immunization with heat-killed Mycobacterium vaccae stimulates CD8+ cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis. Infect Immun 65:4525–4530PubMedGoogle Scholar
  27. 27.
    Speizer FE (2000) Occupational and environmental lung diseases: an overview. Environ Health Perspect 108(suppl 4):603–604PubMedGoogle Scholar
  28. 28.
    Torkko P, Suomalainen S, Iivanainen et al (2002) Mycobacterium palustre sp. nov., a potentially pathogenic, slowly growing mycobacterium isolated from clinical and veterinary specimens and from Finnish stream waters. Int J Syst Evol Microbiol 52:1519–1525CrossRefPubMedGoogle Scholar
  29. 29.
    Van Ingen J, Boeree MJ, Dekhuijzen PNR, van Soolingen DE (2009) Environmental sources of rapid growing nontuberculous mycobacteria causing disease in humans. Clin Microbiol Infect 15:888–893CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bárbara Adrados
    • 1
  • Esther Julián
    • 2
  • Francesc Codony
    • 1
  • Eduard Torrents
    • 3
  • Marina Luquin
    • 2
  • Jordi Morató
    • 1
  1. 1.Laboratori de Microbiologia Sanitària i Mediambiental. Departament d’Optica i OptometriaUniversitat Politècnica de CatalunyaTerrassa (Barcelona)Spain
  2. 2.Departament de Genètica i de Microbiologia, Facultat de BiociènciesUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Institut de Bioenginyeria de Catalunya (IBEC), Parc Científic de BarcelonaBarcelonaSpain

Personalised recommendations