Current Microbiology

, Volume 62, Issue 1, pp 209–221 | Cite as

Bacterial Diversity in the Haloalkaline Lake Elmenteita, Kenya

  • R. MwirichiaEmail author
  • S. Cousin
  • A. W. Muigai
  • H. I. Boga
  • E. Stackebrandt


Lake Elmenteita is one of the alkaline saline lakes within the Kenyan Rift valley. The lake is situated on the floor of the Kenyan Rift Valley at 1,776 m above sea level and has no direct outlet. The microbial diversity of the lake was investigated using a culture-independent approach. Five different sampling points were selected randomly within the lake. Wet sediments and water samples were collected from each sampling point. In addition, dry mud cake was collected from three points where the lake had dried. DNA was extracted from the samples and the 16S rRNA genes amplified using universal primers for Bacteria. Thirteen clone libraries were constructed using the PCR amplified 16S rRNA genes. A total of 1,663 clones were picked. Representative clones were selected using ARDRA technique for sequencing. 655 partial and non-chimeric clone sequences indicated the presence of 37 orders in the Domain Bacteria. Cyanobacteria were the most abundant clones in terms of numbers whereas members of the phylum Firmicutes group were the second in terms of numbers but the most diverse in terms of genera represented. All clones affiliated to the class Betaproteobacteria originated from DNA obtained from the water samples. Analysis using BLAST showed that 93.1% of the sequenced clones had similarity values below 98% to both cultured and as yet uncultured bacteria, resulting in 596 phylotypes. Therefore, it can be concluded that Lake Elmenteita harbours phylogenetically diverse groups of bacteria involved in complex metabolic interactions within the Lake’s ecosystem.


Clone Library Bacteroidetes Rift Valley Soda Lake Chloroflexi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by DAAD within a PhD scholarship (Sandwich model). The work was done at the DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen), Braunschweig.

Supplementary material

284_2010_9692_MOESM1_ESM.docx (236 kb)
(DOCX 236 kb)


  1. 1.
    Grant WD (1992) Alkaline environments. In: Lederberg J (ed) Encyclopaedia of microbiology, vol 1. Academic Press, London, pp 73–80Google Scholar
  2. 2.
    Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology (Moscow, English Translation) 68:503–521Google Scholar
  3. 3.
    Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda Lake Alkaliphiles. FEMS Microbiol Ecol 19:181–191CrossRefGoogle Scholar
  4. 4.
    Grant S, Grant D, Brian EJ, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139–145CrossRefPubMedGoogle Scholar
  5. 5.
    Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200CrossRefPubMedGoogle Scholar
  6. 6.
    Baumgarte S (2003) Microbial diversity of soda lake habitats. PhD thesis, Carolo-Wilhelmina University, BraunschweigGoogle Scholar
  7. 7.
    Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda Lake Alkaliphiles assessed by molecular methods. Extremophiles 8:63–71CrossRefPubMedGoogle Scholar
  8. 8.
    Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microbiol Ecol 54:598–617CrossRefGoogle Scholar
  9. 9.
    Melack JM (1988) Primary producer dynamics associated with evaporative concentration in a shallow, equatorial soda lake (Lake Elmenteita, Kenya). Hydrobiologia 158:1–14CrossRefGoogle Scholar
  10. 10.
    Mwaura F (1999) A spatio-chemical survey of hydrogeothermal springs in Lake Elmenteita. Kenya Int J Salt Lake Res 8:127–138Google Scholar
  11. 11.
    Mwirichia R, Cousin S Muigai AW, Boga HI, Stackebrandt E (2009) Archaeal diversity in the Haloalkaline Lake Elmenteita in Kenya. Curr Microbiol. doi: 10.1007/s00284-009-9500-1
  12. 12.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  13. 13.
    Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 70:7352–7365CrossRefGoogle Scholar
  14. 14.
    Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene 73:237–244CrossRefPubMedGoogle Scholar
  15. 15.
    Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72(9):5734–5741CrossRefPubMedGoogle Scholar
  16. 16.
    Duckworth AW, Grant S, Grant WD, Jones BE, Meyer D (1998) Dietzia natronolimnaios sp. nov., a new species of the genus Dietzia isolated from an East African soda lake. Extremophiles 2:359–366CrossRefPubMedGoogle Scholar
  17. 17.
    Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. Fed Am Soc Exp Biol J 7:113–123Google Scholar
  18. 18.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  19. 19.
    Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbour-joining method. Proc Natl Acad Sci USA 101:11030–11035CrossRefPubMedGoogle Scholar
  20. 20.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  21. 21.
    Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf JS, Codd GA, Pflugmacher S (2004) Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita. J Plankt Res 26(8):925–935CrossRefGoogle Scholar
  22. 22.
    Iltis A (1969) Phytoplancton des eaux natronées du Kanem (Tchad). I. Les lacs permanents a Spirulina. Cah. O.R.S.TO.M. Sér Hydrobiol 3:29–43Google Scholar
  23. 23.
    Kebede E, Willén E (1996) Anabaenopsis abijatae, a new cyanophyte from Lake Abijata, an alkaline, saline lake in the Ethiopian Rift Valley. Algol Stud 80:1–8Google Scholar
  24. 24.
    Vareschi E (1982) The ecology of Lake Nakuru (Kenya) III. Abiotic factors and primary production. Oecologia 55:81–101CrossRefGoogle Scholar
  25. 25.
    Nielsen P, Rainey FA, Outtrup H, Priest FG, Fritze D (1994) Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett 117:61–66CrossRefGoogle Scholar
  26. 26.
    Zhilina TN, Zavarzin G, Rainey FA, Kevbrin VV, Ostrikina NA, Lysenko AM (1996) Spirochaeta alkalica sp. nov., Spirochaeta africana sp. nov., and Spirochaeta asiatica sp. nov., alkaliphilic anaerobes from the continental soda lakes in Central Asia and the East African rift. Int J Sys Bacteriol 46:305–312CrossRefGoogle Scholar
  27. 27.
    Griepenburg U, Ward-Rainey N, Mohamed S, Schlesner H, Marxsen H, Rainey FA, Stackebrandt E, Auling G (1999) Phylogenetic diversity, polyamine pattern and DNA base composition of members of the order Planctomycetales. Int J Syst Bacteriol 49(2):689–696CrossRefPubMedGoogle Scholar
  28. 28.
    Lin LH, Gihring T, Sherwood LB, Boice E, Pratt L, Pfiffner S, Lippmann J, Onstott TC (2006) Planktonic microbial communities associated with fracture-derived groundwater in a deep gold mine of South Africa. Geomicrobiol J 23(6):475–497CrossRefGoogle Scholar
  29. 29.
    Kalmbach S, Manz W, Wecke J, Szewzyk U (1999) Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int J Syst Bacteriol 49(2):769–777CrossRefPubMedGoogle Scholar
  30. 30.
    Teske AP, Ramsing NB, Kver J, Fossing H (1995) Phylogeny of Thioploca and related filamentous sulphide-oxidizing bacteria. Syst Appl Microbiol 18:517–526Google Scholar
  31. 31.
    Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Cleland D, Krader P (2003) Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulphate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53(5):1327–1332CrossRefPubMedGoogle Scholar
  32. 32.
    Klappenbach JA, Pierson BK (2004) Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium “Candidatus Chlorothrix halophila” gen. nov., sp. nov., recovered from hypersaline microbial mats. Arch Microbiol 181:17–25CrossRefPubMedGoogle Scholar
  33. 33.
    Imhoff JF (1984) Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavedam 1924. Int J Syst Bacteriol 34:338–339CrossRefGoogle Scholar
  34. 34.
    Imhoff JF, Süling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae: a re-evaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113CrossRefPubMedGoogle Scholar
  35. 35.
    Imhoff JF, Süling J, Petri R (1998) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. Int J Syst Bacteriol 48:1129–1143CrossRefPubMedGoogle Scholar
  36. 36.
    Milford AD, Achenbach LA, Jung DO, Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174:18–27CrossRefPubMedGoogle Scholar
  37. 37.
    Jonkers HM, Ludwig R, de Wit R, Pringault O, Muyzer G, Niemann H, Finke N, de Beer D (2003) Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain). FEMS Microbiol Ecol 44:175–189CrossRefPubMedGoogle Scholar
  38. 38.
    Nübel U, Bateson MM, Madigan MT, Kühl M, Ward DM (2001) Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. App Environ Microbiol 67:4365–4371CrossRefGoogle Scholar
  39. 39.
    Nübel U, Bateson MM, Vandieken V, Wieland A, Kühl M, Ward DM (2002) Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats. Appl Environ Microbiol 68:4593–4603CrossRefPubMedGoogle Scholar
  40. 40.
    Ward DM, Santegoeds CM, Nold SC, Ramsing NB (1997) Biodiversity within hot spring microbial communities: molecular monitoring of enrichment cultures. Antonie Von Leeuwenhoek 71:143–150CrossRefGoogle Scholar
  41. 41.
    Jones BE, Grant WD, Collins NC, Mwatha WE (1994) Alkaliphiles: diversity and identification. In: Priest FG (ed) Bacterial diversity systematics. Plenum Press, New York, pp 195–230Google Scholar
  42. 42.
    Groth I, Schumann P, Rainey FA, Martin K, Schütze B, Augsten K (1997) Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. Int J Syst Bacteriol 47:788–794CrossRefPubMedGoogle Scholar
  43. 43.
    Brian EJ, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E (2005) Cellulomonas bogoriensis sp. nov., an alkaliphilic Cellulomonad. Int J Syst Bacteriol 55:1711–1714Google Scholar
  44. 44.
    Zhilina TN, Zavarzin G, Rainey FA, Pikuta AEN, Osipov GA, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic sulphate-reducing bacterium. Int J Sys Bacteriol 47:144–149CrossRefGoogle Scholar
  45. 45.
    Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100PubMedGoogle Scholar
  46. 46.
    Reichenbach H (1991) The order Cytophagales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 3, 2nd edn. Springer-Verlag, New York, NY, pp 3631–3675Google Scholar
  47. 47.
    Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234CrossRefGoogle Scholar
  48. 48.
    Green PN (1992) The genus Methylobacterium. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes: a handbook of the biology of bacteria: ecophysiology, isolation, identification, applications, vol II. Springer-Verlag NY Inc., New York, pp 2342–2349Google Scholar
  49. 49.
    Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • R. Mwirichia
    • 1
    Email author
  • S. Cousin
    • 2
  • A. W. Muigai
    • 1
  • H. I. Boga
    • 1
  • E. Stackebrandt
    • 2
  1. 1.Institute for Biotechnology ResearchJomo Kenyatta University of Agriculture and TechnologyNairobiKenya
  2. 2.Deutsche Sammlung von Mikroorganismen und ZellkulturenBraunschweigGermany

Personalised recommendations