Current Microbiology

, Volume 62, Issue 1, pp 182–190 | Cite as

The Diversity and Anti-Microbial Activity of Endophytic Actinomycetes Isolated from Medicinal Plants in Panxi Plateau, China

  • Ke Zhao
  • Petri Penttinen
  • Tongwei Guan
  • Jing Xiao
  • Qiang Chen
  • Jun Xu
  • Kristina Lindström
  • Lili ZhangEmail author
  • Xiaoping ZhangEmail author
  • Gary A. Strobel


Traditional Chinese medicinal plants are sources of biologically active compounds, providing raw material for pharmaceutical, cosmetic and fragrance industries. The endophytes of medicinal plants participate in biochemical pathways and produce analogous or novel bioactive compounds. Panxi plateau in South-west Sichuan in China with its unique geographical and climatological characteristics is a habitat of a great variety of medicinal plants. In this study, 560 endophytic actinomycetes were isolated from 26 medicinal plant species in Panxi plateau. 60 isolates were selected for 16S rDNA-RFLP analysis and 14 representative strains were chosen for 16S rDNA sequencing. According to the phylogenetic analysis, seven isolates were Streptomyces sp., while the remainder belonged to genera Micromonospora, Oerskovia, Nonomuraea, Promicromonospora and Rhodococcus. Antimicrobial activity analysis combined with the results of amplifying genes coding for polyketide synthetase (PKS-I, PKS-II) and nonribosomal peptide synthetase (NRPS) showed that endophytic actinomycetes isolated from medicinal plants in Panxi plateau had broad-spectrum antimicrobial activity and potential natural product diversity, which further proved that endophytic actinomycetes are valuable reservoirs of novel bioactive compounds.


Antimicrobial Activity Medicinal Plant Indicator Organism NRPS Gene Nonribosomal Peptide Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the foundation of National Science Program of China (Project no. 30570062) and the fund of Sichuan provincal science and technology international cooperative project. We sincerely acknowledge kindness support from the Key Laboratory of Protection and Utilization of Biological Resources, Tarim university and Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State Oceanic Administration, when our laboratory was damaged in 2008 Sichuan earthquake.

Supplementary material

284_2010_9685_MOESM1_ESM.doc (136 kb)
Supplementary material 1 (DOC 136 kb)


  1. 1.
    Araujo WL, Marcon J, Maccheroni WJ et al (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914CrossRefPubMedGoogle Scholar
  2. 2.
    Bascom-Slack CA, Ma C, Moore E et al (2009) Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests. Microb Ecol 58:374–383CrossRefPubMedGoogle Scholar
  3. 3.
    Cao L, Qiu Z, You J et al (2004) Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39:425–430CrossRefPubMedGoogle Scholar
  4. 4.
    Castillo UF, Strobel GA, Mullenberg K et al (2006) Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett 255:296–300CrossRefPubMedGoogle Scholar
  5. 5.
    Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608CrossRefPubMedGoogle Scholar
  6. 6.
    Crawford DL, Lynch JM, Whipps JM et al (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905PubMedGoogle Scholar
  7. 7.
    Cui XL, Mao PH, Zeng M et al (2001) Streptimonospora salina gen nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363PubMedGoogle Scholar
  8. 8.
    El-Shatoury S, Abdulla H, El-Karaaly O et al (2006) Bioactivites of endophytic actinomycetes from selected medicinal plants in the world heritage site of saint Katherine, Egypt. Int J Bot 2:307–312CrossRefGoogle Scholar
  9. 9.
    Fiedler HP, Bruntner C, Riedlinger J et al (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot (Tokyo) 61:158–163Google Scholar
  10. 10.
    Hou BC, Wang ET, Li Y et al (2009) Rhizobial resource associated with epidemic legumes in Tibet. Microb Ecol 57:69–81CrossRefPubMedGoogle Scholar
  11. 11.
    Igarashia Y, Trujillob ME, Martínez-Molinab E et al (2007) Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg Med Chem Lett 17:3702–3705CrossRefGoogle Scholar
  12. 12.
    Jiang SM, Li X, Zhang L et al (2008) Culturable actinobacteria isolated from marine sponge Iotrochota sp. Mar Biol 153:945–952CrossRefGoogle Scholar
  13. 13.
    Johannes H, Gabriele B, Barbara S (2006) Isolation procedures for endophytic microorganisms. Berlin, Springer, pp 299–305Google Scholar
  14. 14.
    Juan D, Gang F, Yi Z (2007) Current situation and outlook of development and use special biotic resources in Panxi region. Sci Technol Inf Panzh 32:8–11Google Scholar
  15. 15.
    Karthikeyan B, Jaleel CA, Lakshmanan GM et al (2008) Studies on rhizosphere microbial diversity of some commercially important medicinal plants. Colloids Surf B 62:143–145CrossRefGoogle Scholar
  16. 16.
    Kelly GT, Sharma V, Watanabe CM (2008) An improved method for culturing Streptomyces sahachiroi: biosynthetic origin of the enol fragment of azinomycin B. Bioorg Chem 36:4–15CrossRefPubMedGoogle Scholar
  17. 17.
    Li J, Zhao GZ, Chen HH et al (2008) Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol 47:574–580CrossRefPubMedGoogle Scholar
  18. 18.
    Li Q, Zhang X, Zou L et al (2009) Horizontal gene transfer and recombination shape mesorhizobial populations in the gene center of the host plants Astragalus luteolus and Astragalus ernestii in Sichuan, China. FEMS Microbiol Ecol 70:71–79PubMedGoogle Scholar
  19. 19.
    Matsuura E, Shimomura K, Ishimaru K (2000) Flavonoid and polyacetylene from Pratia nummularia. Nat Med 54:44Google Scholar
  20. 20.
    Minowa Y, Araki M, Kanehisa M (2007) Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. J Mol Biol 368:1500–1617CrossRefPubMedGoogle Scholar
  21. 21.
    Muscholl-Silberhorn A, Thiel V, Imhoff JF (2008) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean sea. Microb Ecol 55:94–106CrossRefPubMedGoogle Scholar
  22. 22.
    Peng Y, Jiang Y, Duan S et al (2007) Selective isolation methods of rare actinomycetes. JYNS 29:86–89Google Scholar
  23. 23.
    Qin S, Li J, Chen HH et al (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186CrossRefPubMedGoogle Scholar
  24. 24.
    Qiu D, Ruan J, Huang Y (2008) Selective isolation and rapid identification of members of the genus Micromonospora. Appl Environ Microbiol 74:5593–5597CrossRefPubMedGoogle Scholar
  25. 25.
    Schirmer A, Gadkari R, Reeves CD et al (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849CrossRefPubMedGoogle Scholar
  26. 26.
    Schulz D, Nachtigall J, Riedlinger J et al (2009) Piceamycin and its N-acetylcysteine adduct is produced by Streptomyces sp. GB 4-2. J Antibiot (Tokyo) 62:513–518Google Scholar
  27. 27.
    Sheil D (1999) Tropical forest diversity, environmental change and species augmentation: after the intermediate disturbance hypothesis. J Veg Sci 10:851–860CrossRefGoogle Scholar
  28. 28.
    Stone JK, Charles WB, James FW (2000) An overview of endophytic microbes: endophytism defined. Dekker, New York, pp 3–5Google Scholar
  29. 29.
    Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544CrossRefPubMedGoogle Scholar
  30. 30.
    Strobel GA, Miller RV, Martinez-Miller C et al (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf quercina. Microbiology 145:1919–1926CrossRefPubMedGoogle Scholar
  31. 31.
    Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268CrossRefPubMedGoogle Scholar
  32. 32.
    Taechowisan T, Lu C, Shen Y et al (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691–1695CrossRefPubMedGoogle Scholar
  33. 33.
    Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  34. 34.
    Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  35. 35.
    Thongchai T, John FP, Saisamorn L (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385CrossRefGoogle Scholar
  36. 36.
    Verma VC, Gond SK, Kumar A et al (2009) Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb Ecol 57:749–756CrossRefPubMedGoogle Scholar
  37. 37.
    Vickers JC, Williams ST, Ross GW (1984) A taxonomic approach to selective isolation of streptomycetes from soil. Academic Press, Orlando, pp 553–561Google Scholar
  38. 38.
    Wu CP, Lin QQ, Chen MY et al (2006) Studies on the chemical components and antibacterial activity of volatile oil of mosla dianthera maxim. J Fujian Norm Univ (Nat Sci Ed) 22:101–106Google Scholar
  39. 39.
    Xue PF, Gang L, Wen ZZ et al (2005) Secondary metabolites from Potentilla multifida L. (Rosaceae). Biochem Syst Ecol 33:725–728CrossRefGoogle Scholar
  40. 40.
    Yan XC (1992) Isolation and identification of actinomycete. Science Press, Beijing, pp 45–68Google Scholar
  41. 41.
    Yang GP, Qian JF (2009) Reviews of research on Arisaematis. Chin J Ethnomed Ethnopharm 18:19–21Google Scholar
  42. 42.
    Zhang HT, Zhang W, Jin Y et al (2008) A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie Van Leeuwenhoek 93:241–248CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ke Zhao
    • 1
  • Petri Penttinen
    • 2
  • Tongwei Guan
    • 1
    • 3
  • Jing Xiao
    • 4
  • Qiang Chen
    • 1
  • Jun Xu
    • 4
  • Kristina Lindström
    • 2
  • Lili Zhang
    • 3
    Email author
  • Xiaoping Zhang
    • 1
    Email author
  • Gary A. Strobel
    • 5
  1. 1.Department of Microbiology, College of Resource and Environmental SciencesSichuan Agricultural UniversityYaanPeople’s Republic of China
  2. 2.Department of Applied Chemistry and MicrobiologyUniversity of HelsinkiHelsinkiFinland
  3. 3.Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction CorpsTarim UniversityAlarPeople’s Republic of China
  4. 4.Key Laboratory of Marine Biogenetic Resources, The Third Institute of OceanographyState Oceanic AdministrationXiamenPeople’s Republic of China
  5. 5.Department of Plant SciencesMontana State UniversityBozemanUSA

Personalised recommendations