Current Microbiology

, Volume 60, Issue 4, pp 263–267 | Cite as

Role of the Y-Family DNA Polymerases YqjH and YqjW in Protecting Sporulating Bacillus subtilis Cells from DNA Damage

  • Andrea M. Rivas-Castillo
  • Ronald E. Yasbin
  • E. Robleto
  • Wayne L. Nicholson
  • Mario Pedraza-ReyesEmail author


The role played by the Y-family DNA polymerases YqjH and YqjW in protecting sporulating cells of Bacillus subtilis from DNA damage was determined. The absence of either yqjH and/or yqjW not only reduced sporulation efficiency but also sensitized the sporulating cells to hydrogen peroxide, tert-butylhydroperoxide (t-BHP), mitomycin-C (M-C), and UV-C radiation. Moreover, these DNA-damaging agents increased the mutation frequency of wild-type sporulating cells to 4-azaleucine, but the production of mutants was YqjH- and YqjW-dependent. In conclusion, the results presented here indicate that YqjH/YqjW-dependent-translesion synthesis (TLS) operates in sporulating B. subtilis cells and contributes in processing spontaneous and artificially induced genetic damage, which is apparently required for an efficient sporulation process.


Subtilis Cell Subtilis Spore Sporulating Cell Sporulation Efficiency Spore Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Patricia Fajardo-Cavazos, Jose Luis Ortiz-Lugo, and Silvia Mellado for invaluable technical assistance. This work was supported by Consejo Nacional de Ciencia y Tecnología from México (CONACyT) grants 43644 and 84482 to M. Pedraza-Reyes and by grants from NASA (NNA06CB58G) and USDA (FLA-MCS-04602) to W.L.N. A.M. Rivas-Castillo was supported by a doctoral scholarship from CONACyT.


  1. 1.
    Belitsky BR, Gustafsson MCU, Sonenshein AL, VonWachenfeldt C (1997) A lrp-like gene of Bacillus subtilis involved in branched-chain amino acid transport. J Bacteriol 179:5448–5457PubMedGoogle Scholar
  2. 2.
    Duigou S, Ehrlich SD, Noirot P, Noirot-Gros MF (2004) Distinctive genetic features exhibited by the Y-family DNA polymerases in Bacillus subtilis. Mol Microbiol 54:439–451CrossRefPubMedGoogle Scholar
  3. 3.
    Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126CrossRefPubMedGoogle Scholar
  4. 4.
    Kunst F, Ogasawara N, Moszer I et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256CrossRefPubMedGoogle Scholar
  5. 5.
    Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USAGoogle Scholar
  6. 6.
    Riesenman PJ, Nicholson WL (2000) Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl Environ Microbiol 66:620–626CrossRefPubMedGoogle Scholar
  7. 7.
    Savery NJ (2007) The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol 15:326–333CrossRefPubMedGoogle Scholar
  8. 8.
    Schaeffer P, Millet J, Aubert JP (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 54:704–711CrossRefPubMedGoogle Scholar
  9. 9.
    Setlow P (2006) Spores of Bacillus subtilis: their resistance to radiation, heat and chemicals. J Appl Microbiol 101:514–525CrossRefPubMedGoogle Scholar
  10. 10.
    Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078CrossRefPubMedGoogle Scholar
  11. 11.
    Sung H, Yeamans G, Ross CA, Yasbin RE (2003) Roles of YqjH and YqjW, homologs of the Escherichia coli UmuC/DinB or Y superfamily of DNA polymerases, in stationary phase mutagenesis and UV-induced mutagenesis of Bacillus subtilis. J Bacteriol 185:2153–2160CrossRefPubMedGoogle Scholar
  12. 12.
    Sutton MD, Smith BT, Godoy VG, Walker GC (2000) The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annu Rev Genet 34:479–497CrossRefPubMedGoogle Scholar
  13. 13.
    Tang M, Pham P, Shen J, Taylor S et al (2000) Roles of E. coli polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404:1014–1018CrossRefPubMedGoogle Scholar
  14. 14.
    Vagner V, Dervyn E, Ehrlich D (1998) A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104CrossRefPubMedGoogle Scholar
  15. 15.
    Woodgate R (1999) A plethora of lesion-replicating DNA polymerases. Genes Dev 13:2191–2195CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrea M. Rivas-Castillo
    • 1
  • Ronald E. Yasbin
    • 2
  • E. Robleto
    • 2
  • Wayne L. Nicholson
    • 3
  • Mario Pedraza-Reyes
    • 1
    Email author
  1. 1.Division of Natural and Exact Sciences, Department of BiologyUniversity of GuanajuatoGuanajuatoMéxico
  2. 2.School of Life SciencesUniversity of Nevada-Las VegasLas VegasUSA
  3. 3.Department of Microbiology and Cell ScienceUniversity of Florida, Space Life Sciences LaboratoryKennedy Space CenterUSA

Personalised recommendations