Current Microbiology

, Volume 60, Issue 3, pp 157–161

Isolation and Characterization of Moderately Halophilic Bacteria from Tunisian Solar Saltern

  • Houda Baati
  • Ridha Amdouni
  • Neji Gharsallah
  • Abdelghani Sghir
  • Emna Ammar


Bacterial screenings from solar saltern in Sfax (Tunisia) lead to the isolation of 40 moderately halophilic bacteria which were able to grow optimally in media with 5–15% of salt. These isolates were phylogenetically characterized using 16S rRNA gene sequencing. Two groups were identified including 36 strains of Gamma-Proteobacteria (90%) and 4 strains of Firmicutes (10%). The Gamma-Proteobacteria group consisted of several subgroups of the Halomonadaceae (52.5%), the Vibrionaceae (15%), the Alteromonadaceae (10%), the Idiomarinaceae (7.5%), and the Alcanivoracaceae (5%). Moreover, three novel species: 183ZD08, 191ZA02, and 191ZA09 were found, show <97% sequence similarity of the 16S rRNA sequences while compared to previously published cultivated species. Most of these strains (70%) were able to produce hydrolases: amylases, proteases, phosphatases, and DNAases. Over the isolates, 60% produced phosphatases, 15.0% proteases, 12.5% amylases and DNAases equally. This study showed that the solar saltern of Sfax is an optimal environment for halophilic bacterial growth, where diverse viable bacterial communities are available and may have many industrial applications.


  1. 1.
    Artiguenave F, Wincker P, Brottier P, Duprat JF, Scarpelli C, Verdier J, Vico V, Weissenbach J, Saurin W (2000) Genomic exploration of the hemiascomycetous yeast. 2. Data generation and processing. FEBS Lett 487:13–16CrossRefPubMedGoogle Scholar
  2. 2.
    Barrow GI, Feltham RKA (1993) Cowan and Steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Block SS (2001) Desinfection, sterilisation and preservation. Lippincott Willianis and Wilkins (eds), pp. 31–46Google Scholar
  4. 4.
    Caton TM, Witte LR, Ngyuen HD, Buchkeim JA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt plains of Oklahoma. Microb Ecol 48:449–462CrossRefPubMedGoogle Scholar
  5. 5.
    DasSarma S (2001) Halophiles. Encyclopaedia of life sciences, pp. 1–9Google Scholar
  6. 6.
    Ghozlan H, Deif H, Abu Kandil R, Sabry R (2006) Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J Gen Appl Microbiol 52:63–72CrossRefPubMedGoogle Scholar
  7. 7.
    Hicks RE, Amann RI, Stahl DA (1992) Dual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rDNA sequences. Appl Environ Microbiol 58:2158–2163PubMedGoogle Scholar
  8. 8.
    Huang F, Garcia CY, Cayot BKC, Mah RA (2000) Salinivibrio costicola subsp. Vallimortis subsq. nov, a halotolerant facultative anaerobe from death valley, and emended description of Salinivibrio costicola. Int J Syst Evol Microbiol 50:615–622PubMedGoogle Scholar
  9. 9.
    Jeffries CD, Holtman DF, Guse DG (1957) Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol 73:591–613Google Scholar
  10. 10.
    Lichfield CD (2002) Halophiles. J Ind Microbiol Biotechnol 28:21–22Google Scholar
  11. 11.
    Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83CrossRefPubMedGoogle Scholar
  12. 12.
    Oren A (1999) Bioenergetics aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedGoogle Scholar
  13. 13.
    Rodriguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial population with salt concentration in a multipond saltern. Microb Ecol 11:107–115CrossRefGoogle Scholar
  14. 14.
    Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36:333–340CrossRefPubMedGoogle Scholar
  15. 15.
    Sangeeta M, Chandra SN (2001) An efficient method for qualitative screening of phosphate solubilizing bacteria. Curr Microbiol 43:51–56CrossRefGoogle Scholar
  16. 16.
    Ventosa A, Quesada E, Rodriguez-Valera F (1982) Numerical taxonomy of moderately halophilic Gram-negativerods. J Gen Microbiol 128:1959–1968Google Scholar
  17. 17.
    Ventosa A, Marquez M, Garabito M, Arahal D (1998) Moderately halophilic Gram-positive bacterial diversity in hypersaline environments. Extremophiles 2:297–304CrossRefPubMedGoogle Scholar
  18. 18.
    Yeon SH, Jeong WJ, Park JS (2005) The diversity of culturable organotrophic bacteria from local salterns. J Microbiol 43:1–10PubMedGoogle Scholar
  19. 19.
    Zahran HH (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fertil Soils 25:211–223CrossRefGoogle Scholar
  20. 20.
    Zheng A, Alm EW, Stahl DA (1996) Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl Environ Microbiol 62:4504–4513PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Houda Baati
    • 1
  • Ridha Amdouni
    • 2
  • Neji Gharsallah
    • 3
  • Abdelghani Sghir
    • 4
  • Emna Ammar
    • 1
  1. 1.Ecole Nationale d’Ingénieurs de Sfax, UR: Etude et Gestion des Environnements Côtier et UrbainSfaxTunisia
  2. 2.Laboratoire d’AnalyseCompagnie Générale Tunisienne des Salines (COTUSAL)SfaxTunisia
  3. 3.Faculté des Sciences de SfaxLaboratoire de Biotechnologie MicrobienneSfaxTunisia
  4. 4.CNRS-UMR 8030-CE, CEA-Genoscope and Université d’Evry Val d’EssonneEvryFrance

Personalised recommendations