Advertisement

Current Microbiology

, Volume 60, Issue 1, pp 47–52 | Cite as

Archaeal Diversity in the Haloalkaline Lake Elmenteita in Kenya

  • Romano Mwirichia
  • Sylvie Cousin
  • Anne W. Muigai
  • Hamadi I. Boga
  • Erko Stackebrandt
Article

Abstract

A non-culture approach was used to study the archaeal diversity in Lake Elmenteita, Kenya. Five different sampling points were selected randomly within the lake. Wet sediments and water samples were collected from each sampling point. In addition, dry mud cake was collected from three points where the lake had dried. DNA was extracted from these samples and the 16S rRNA genes were amplified using primers described to be Domain-specific for Archaea. Eleven clone libraries were constructed using PCR-amplified 16S rRNA genes. A total of 1,399 clones were picked and analysed via ARDRA. 170 ARDRA patterns were unique and the respective clones were selected for sequencing. 149 clones gave analysable sequences. BLAST analysis showed that 49 belong to the Domain Archaea while the others were either chimera or affiliated to eukaryotic taxa. Comparative sequence analysis of archaeal clones affiliated them to a wide range of genera. The order Halobacteriales was represented by members of the genera Natronococcus, Halovivax, Halobiforma, Halorubrum, and Halalkalicoccus. The highest percentage (46%) of the clones, however, belonged to uncultured members of the Domain Archaea in the order Halobacteriales. The results show that the archaeal diversity in the lake could be higher than previously reported.

Keywords

Archaea Rift Valley Soda Lake Halobacterium Methanosaeta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by DAAD within a Ph.D. scholarship (Sandwich model). The work was done at the DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen), Braunschweig.

References

  1. 1.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  2. 2.
    Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741CrossRefPubMedGoogle Scholar
  3. 3.
    Ausubel FM (1995) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  4. 4.
    Baumgarten S (2003) Microbial diversity of soda lake habitats. Ph.D. thesis, Carolo-Wilhelmina University, BraunschweigGoogle Scholar
  5. 5.
    Benlloch S, Acinas SG, Anton J, Lopez-Lopez A, Luz SP, Rodriguez-Valera F (2001) Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microbiol Ecol 41:12–19Google Scholar
  6. 6.
    Cytryn E, Minz D, Oremland RS, Cohen Y (2000) Distribution and diversity of Archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt). Appl Environ Microbiol 66:3269–3276CrossRefPubMedGoogle Scholar
  7. 7.
    De Long EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689CrossRefGoogle Scholar
  8. 8.
    Dojka MA, Harris JK, Pace NR (2000) Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl Environ Microbiol 66:1617–1621CrossRefPubMedGoogle Scholar
  9. 9.
    Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda Lake Alkaliphiles. FEMS Microbiol Ecol 19:181–191CrossRefGoogle Scholar
  10. 10.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  11. 11.
    Garrity GM, Holt JG (2001) Phylum AII. Euryarchaeota phy. nov. In Bergey’s manual of systematic bacteriology. In: Boone DR, Castenholz RW, Garrity GM (ed) The archaea and the deeply branching and phototrophic bacteria, 2nd edn, vol 1. Springer, New York, pp. 211–355Google Scholar
  12. 12.
    Grant S, Grant D, Brian EJ, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139–145CrossRefPubMedGoogle Scholar
  13. 13.
    Hartmann R, Sickinger HD, Oesterhelt D (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77:3821–3825CrossRefPubMedGoogle Scholar
  14. 14.
    Higgins DG, Sharp PM (1988) CLUSTAL:a package for performing multiple sequence alignments on a microcomputer. Gene 73:237–244CrossRefPubMedGoogle Scholar
  15. 15.
    Hugenholtz P, Goebel B, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Int J Syst Bacteriol 180:4765–4774Google Scholar
  16. 16.
    Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200CrossRefPubMedGoogle Scholar
  17. 17.
    Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695CrossRefPubMedGoogle Scholar
  18. 18.
    Melack JM (1988) Primary producer dynamics associated with evaporative concentration in a shallow, equatorial soda lake (Lake Elmenteita, Kenya). Hydrobiologia 158:1–14CrossRefGoogle Scholar
  19. 19.
    Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microbiol Ecol 54:598–617CrossRefGoogle Scholar
  20. 20.
    Moune′ S, Manach N, Hirschler A, Caumette P, Willison JC, Matheron R (1999) Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter. Int J Syst Bacteriol 49:103–112CrossRefGoogle Scholar
  21. 21.
    Mwaura F (1999) A spatio-chemical survey of hydrogeothermal springs in Lake Elementaita. Kenya Int J Salt Lake Res 8:127–138Google Scholar
  22. 22.
    Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. Fed Am Soc Exp Biol J 7:113–123Google Scholar
  23. 23.
    Olsen GJ, Lane DL, Giovannoni SJ, Pace NR (1986) Microbial ecology and evolution: a ribosomal RNA approach. Ann Rev Microbiol 40:337–365CrossRefGoogle Scholar
  24. 24.
    Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:55–63Google Scholar
  25. 25.
    Oren A, Trüper HG (1990) Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethylamine N-oxide. FEMS Microbiol Lett 70:33–36CrossRefGoogle Scholar
  26. 26.
    Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda Lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71CrossRefPubMedGoogle Scholar
  27. 27.
    Robertson CE, Spear JR, Harris JK, Pace NR (2009) Diversity and stratification of archaea in a hypersaline microbial mat. Appl Environ Microbiol 75:1801–1810CrossRefPubMedGoogle Scholar
  28. 28.
    Sahl JW, Pace NR, Spear JR (2008) Comparative molecular analysis of endoevaporitic microbial communities. Appl Environ Microbiol 74:6444–6446CrossRefPubMedGoogle Scholar
  29. 29.
    Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  30. 30.
    Smalla K, Cresswell N, Mendonca-Hagler LC, Wolters A, Van Elsas JD (1993) Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J Appl Bacteriol 74:78–85Google Scholar
  31. 31.
    Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 70:7352–7365CrossRefGoogle Scholar
  32. 32.
    Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbour-joining method. Proc Natl Acad Sci USA 101:11030–11035CrossRefPubMedGoogle Scholar
  33. 33.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  34. 34.
    Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5:41–57Google Scholar
  35. 35.
    Von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar
  36. 36.
    Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65CrossRefPubMedGoogle Scholar
  37. 37.
    Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology (Moscow, English Translation) 68:503–521Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Romano Mwirichia
    • 1
  • Sylvie Cousin
    • 2
  • Anne W. Muigai
    • 1
  • Hamadi I. Boga
    • 1
  • Erko Stackebrandt
    • 2
  1. 1.Jomo Kenyatta University of Agriculture and TechnologyNairobiKenya
  2. 2.Deutsche Sammlung von Mikroorganismen und ZellkulturenBraunschweigGermany

Personalised recommendations