Advertisement

Current Microbiology

, Volume 59, Issue 6, pp 600–607 | Cite as

Characterization of Microbulbifer Strain CMC-5, a New Biochemical Variant of Microbulbifer elongatus Type Strain DSM6810T Isolated from Decomposing Seaweeds

  • RaviChand Jonnadula
  • Pankaj Verma
  • Yogesh S. Shouche
  • Sanjeev C. GhadiEmail author
Article

Abstract

A Gram-negative, rod-shaped, non-spore forming, non-motile and moderate halophilic bacteria designated as strain CMC-5 was isolated from decomposing seaweeds by enrichment culture. The growth of strain CMC-5 was assessed in synthetic seawater-based medium containing polysaccharide. The bacterium degraded and utilized agar, alginate, carrageenan, xylan, carboxymethyl cellulose and chitin. The strain was characterized using a polyphasic approach for taxonomic identification. Cellular fatty acid analysis showed the presence of iso-C15:0 as major fatty acid and significant amounts of iso-C17:1ω9c and C18:1ω7c . Phylogenetic analysis based on 16S rDNA sequence indicated that strain CMC-5 is phylogenetically related to Microbulbifer genus and 99% similar to type strain Microbulbifer elongatus DSM6810T. However in contrast to Microbulbifer elongatus DSM6810T, strain CMC-5 is non-motile, utilizes glucose, galactose, inositol and xylan, does not utilize fructose and succinate nor does it produce H2S. Further growth of bacterial strain CMC-5 was observed when inoculated in seawater-based medium containing sterile pieces of Gracilaria corticata thalli. The bacterial growth was associated with release of reducing sugar in the broth suggesting its role in carbon recycling of polysaccharides from seaweeds in marine ecosystem.

Keywords

Halomonas Microbulbifer ZoBell Marine Agar ZoBell Marine Broth Seaweed Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors would like to thank Dr. Tapan Chakraborthy, Institute of Microbial Technology, Chandigarh, India, and Dr. Shanta Nair, National Institute of Oceanography, Goa, India, for DNA G + C and FAME analysis, respectively. This work was supported by Department of Science and Technology, Govt. of India, New Delhi (SERC Fast Track Scheme No SR/FTP/LS-264/2000).

References

  1. 1.
    Andrykovich G, Marx I (1988) Isolation of a new polysaccharide digesting bacteria from salt marsh. Appl Env Microbiol 54:1061–1062Google Scholar
  2. 2.
    Anzai Y, Kim H, Park JY (2000) Phylogenetic affiliation of the Pseudomonads based on 16S rDNA sequence. Int J Syst Evol Microbiol 50:1563–1589PubMedGoogle Scholar
  3. 3.
    Aoki Y, Kamei Y (2006) Preparation of recombinant polysaccharide degrading enzymes from the marine bacterium, Pseudomonas sp. ND137 for the production of protoplasts from Porphyra yezoensis. Eur J Phycol 41:321–328CrossRefGoogle Scholar
  4. 4.
    Camacho PA, Salinias JM, Delgado M, Fuertes C (2007) Use of single cell detritus (SCD) produced from Laminaria saccharina in the feeding of the clam Ruditapes decussatus (Linnaeus, 1758). Aquaculture 1–4:211–218Google Scholar
  5. 5.
    Chen LCM, McCracken I (1993) An antibiotic protocol for preparing axenic culture of Porphyra linearis. Botanica Marina 36:29–33CrossRefGoogle Scholar
  6. 6.
    Ekborg NA, Gonzalez JM, Howard MB, Taylor LE et al (2005) Saccharophagus degradans gen. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 55:1545–1549CrossRefPubMedGoogle Scholar
  7. 7.
    Ensor LA, Stosz SK, Weiner RM (1999) Expression of multiple complex polysaccharide degrading enzyme systems by marine bacterium strain 2–40. J Ind Microbiol Biotechnol 23:123–126CrossRefPubMedGoogle Scholar
  8. 8.
    Felsenstein J (2006) PHYLIP (Phylogenetic Inference Package) version 3.66. Department of Genetics, University of Washington, Seattle, USAGoogle Scholar
  9. 9.
    Gacesa P, Wustman FS (1990) Plate assay for simultaneous detection of alginate lyases and determination of substrate specificities. Appl Environ Microbiol 56:2265–2267PubMedGoogle Scholar
  10. 10.
    Ghadi SC, Muraleedharan UD, Jawaid S (1997) Screening for agarolytic bacteria and development of a novel method for in situ detection of agarase enzyme. J Mar Biotechnol 5:194–200Google Scholar
  11. 11.
    Gonzalez JM, Mayer F, Moran MA, Hodson RE et al (1997) Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., two marine bacteria from a lignin rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376PubMedCrossRefGoogle Scholar
  12. 12.
    Hodgson DA, Chater KF (1981) A chromosomal locus controlling extracellular agarase production by Streptomyces coelicolor A3(2) and inactivation by chromosomal integration of plasmid SCP1. J Gen Microbiol 124:339–348Google Scholar
  13. 13.
    Hosoda A, Sakai M, Kanazawa S (2003) Isolation and characterization of agar-degrading Paenibacillus spp associated with the rhizosphere of spinach. Biosci Biotechnol Biochem 67:1048–1055CrossRefPubMedGoogle Scholar
  14. 14.
    Ivanova EP, Bakunina IY, Sawabe T et al (2002) Two species of culturable bacteria associated with degradation of brown algae. Fucus evanescens. Microbiol Ecol 43:242–249CrossRefGoogle Scholar
  15. 15.
    Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Ann Rev 26:259–315Google Scholar
  16. 16.
    Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226CrossRefPubMedGoogle Scholar
  17. 17.
    Maloy SR (1989) Experimental techniques in bacterial genetics. Jones and Bartlett, Boston, USAGoogle Scholar
  18. 18.
    Mandel M, Marmur J (1968) Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206CrossRefGoogle Scholar
  19. 19.
    Miller GL (1960) Measurement of carboxymethyl cellulase activity. Anal Biochem 1:127–132CrossRefGoogle Scholar
  20. 20.
    Nishijima M, Takadera T, Imamura N et al (2009) Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod–coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 59:1696–1707CrossRefPubMedGoogle Scholar
  21. 21.
    Palleroni NJ (1984) Genus Pseudomonas. Migula 1894. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol I. Williams and Wilkins, Baltimore, pp 141–199Google Scholar
  22. 22.
    Pidiyar V, Kaznowski A, Narayan NB et al (2002) Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus. Int J Syst Evol Microbiol 52:1723–1728CrossRefPubMedGoogle Scholar
  23. 23.
    Quatrano RS, Cladwell BA (1978) Isolation of a unique marine bacterium capable of growth on wide of polysaccharides from macroalgae. Appl Environ Microbiol 36(6):979–981PubMedGoogle Scholar
  24. 24.
    Ruijssenaars HJ, Hartmans S (2001) Plate screening methods for the detection of polysaccharase producing microorganisms. Appl Microbiol Biotechnol 55:143–149CrossRefPubMedGoogle Scholar
  25. 25.
    Ryu S, Cho S, Park S et al (2001) Cloning of cel9A gene and characterization of its gene product from marine bacterium Pseudomonas sp. SK 38. Appl Microbiol Biotechnol 57:138–145CrossRefPubMedGoogle Scholar
  26. 26.
    Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt F (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington D.C., pp 607–654Google Scholar
  27. 27.
    Tanaka T, Yan L, Burgess JG (2003) Microbulbifer arenaceous sp. nov., a novel endolithic bacterium isolated from the inside of red sand stone. Curr Microbiol 47:412–416CrossRefPubMedGoogle Scholar
  28. 28.
    Tang SK, Wang Y, Cai M et al (2008) Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. Int J Syst Evol Microbiol 58:2036–2040CrossRefPubMedGoogle Scholar
  29. 29.
    Tang JC, Taniguchi H, Chu H et al (2009) Isolation and characterization of alginate-degrading bacteria for disposal of seaweed wastes. Lett Appl Microbiol 48:38–43CrossRefPubMedGoogle Scholar
  30. 30.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  31. 31.
    Weiner R, Chakravorthy D, Whiteland L (1998) The architecture of degradative complex polysaccharide enzyme arrays in a marine bacterium has implications for bioremediation. In: Gal L, Halvorson (eds) New developments in marine biotechnology. Plenum Press, New York, pp 171–176Google Scholar
  32. 32.
    Yoon JH, Kim H, Kang KH et al (2003) Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 53:1357–1361CrossRefPubMedGoogle Scholar
  33. 33.
    Yoon JH, Kim IG, Shin DY et al (2003) Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53:53–57CrossRefPubMedGoogle Scholar
  34. 34.
    Yoon JH, Kim IG, Oh TK et al (2004) Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the yellow sea, Korea. Int J Syst Evol Microbiol 54:1111–1116CrossRefPubMedGoogle Scholar
  35. 35.
    Yoon JH, Jung YS, Kang SJ et al (2007) Microbulbifer celer sp. nov., isolated from a marine solar saltern of the yellow sea in Korea. Int. J Syst Evol Microbiol 57:2365–2369CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • RaviChand Jonnadula
    • 1
  • Pankaj Verma
    • 2
  • Yogesh S. Shouche
    • 2
  • Sanjeev C. Ghadi
    • 1
    Email author
  1. 1.Department of BiotechnologyGoa UniversityGoa India
  2. 2.Molecular Biology Unit, National Centre for Cell Science, Pune UniversityPune India

Personalised recommendations