Advertisement

Current Microbiology

, Volume 59, Issue 5, pp 548–553 | Cite as

Morphological, Physiological, and Molecular Characterization of a Newly Isolated Steroid-Degrading Actinomycete, Identified as Rhodococcus ruber Strain Chol-4

  • Laura Fernández de las Heras
  • Esther García Fernández
  • J. María Navarro Llorens
  • Julián Perera
  • Oliver DrzyzgaEmail author
Article

Abstract

The aerobic degradation of cholesterol, testosterone, androsterone, progesterone, and further steroid compounds as sole carbon source has been observed in the newly isolated bacterial Gram-positive strain Chol-4. The 16S rRNA gene sequence shares the greatest similarity with members of the genus Rhodococcus, with the closest shared nucleotide identities of 98–99% with Rhodococcus ruber (DSM 43338T) and Rhodococcus aetherivorans (DSM 44752T). Phylogenetic analysis of Rhodococcus 16S rRNA gene sequences consistently places strain Chol-4 in a clade shared with those both type strains within the Rhodococcus rhodochrous subclade. The results of DNA–DNA hybridization against its two phylogenetically closest neighbors as well as the results of morphological, physiological, and biochemical tests allowed genotypic and phenotypic differentiation of strain Chol-4 from Rhodococcus ruber (DSM 43338T) on the species level and from the other validly described Rhodococcus species on the genus level. Strain Chol-4 therefore merits recognition as a novel strain of the species Rhodococcus ruber and demonstrates for the first time the capability of this species to utilize a great variety of steroid compounds as growth substrates never shown for other species of this genus so far. The genome of strain Chol-4 harbors at least one gene cluster that may be responsible for the degradation of steroid compounds. This gene cluster was identified in a cloned 5458 bp BamHI–EcoRV DNA fragment and compared to similar genes from other Gram-positive and Gram-negative bacteria described so far.

Keywords

Rhodococcus Mycolic Acid Androsterone Steroid Compound Sewage Sludge Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the DSMZ (Braunschweig, Germany) for technical support. L. Fernández de las Heras and E. García Fernández are in receipt of scholarships from the Complutense University of Madrid and from the Spanish Ministry of Education and Science, respectively. O. Drzyzga is contracted by the Spanish Ministry of Education and Science in the programme “Ramón y Cajal” (co-financed by the European Social Fund). This work was supported by grants from the Spanish Ministry of Education and Science in the project BFU2006-15214-C03-02.

Supplementary material

284_2009_9474_MOESM1_ESM.doc (138 kb)
(DOC 137 kb)
284_2009_9474_MOESM2_ESM.doc (24 kb)
(DOC 24 kb)

References

  1. 1.
    Bock C, Kroppenstedt RM, Diekmann H (1996) Degradation and bioconversion of aliphatic and aromatic hydrocarbons by Rhodococcus ruber 219. Appl Microbiol Biotechnol 45:408–410CrossRefGoogle Scholar
  2. 2.
    De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  3. 3.
    Drzyzga O, Navarro Llorens JM, Fernández de las Heras L, García Fernández E, Perera J (2009) Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int J Syst Evol Microbiol 59:1011–1015PubMedCrossRefGoogle Scholar
  4. 4.
    Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol 46:193–218PubMedCrossRefGoogle Scholar
  5. 5.
    Füchtenbusch B, Fabritius D, Wältermann M, Steinbüchel A (1998) Biosynthesis of novel copolyesters containing 3-hydroxypivalic acid by Rhodococcus ruber NCIMB 40126 and related bacteria. FEMS Microbiol Lett 159:85–92CrossRefGoogle Scholar
  6. 6.
    Goodfellow M, Jones AL, Maldonado LA, Salanitro J (2004) Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycetes. Syst Appl Microbiol 27:61–65PubMedCrossRefGoogle Scholar
  7. 7.
    Horinouchi M, Hayashi T, Yamamoto T, Kudo T (2003) A new bacterial steroid degradation gene cluster in Comamonas testosteroni TA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes. Appl Environ Microbiol 69:4421–4430PubMedCrossRefGoogle Scholar
  8. 8.
    Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192Google Scholar
  9. 9.
    Larkin MJ, De Mot R, Kulakov LA, Nagy I (1998) Applied aspects of Rhodococcus genetics. Antonie van Leeuwenhoek 74:133–153PubMedCrossRefGoogle Scholar
  10. 10.
    Li J, Chen JA, Zhao Q, Li X, Shu W (2006) Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber. Chemosphere 65:1627–1633PubMedCrossRefGoogle Scholar
  11. 11.
    Linos A, Steinbüchel A, Spröer C, Kroppenstedt RM (1999) Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int J Syst Bacteriol 49:1785–1791PubMedCrossRefGoogle Scholar
  12. 12.
    Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin DE, White DC (1994) Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl Environ Microbiol 60:542–548PubMedGoogle Scholar
  13. 13.
    McLeod MP, Warren RL, Hsiao WWL et al (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. PNAS 103:15582–15587PubMedCrossRefGoogle Scholar
  14. 14.
    McMinn EJ, Alderson G, Dodson HI, Goodfellow M, Ward AC (2000) Genomic and phenomic differentiation of Rhodococcus equi and related strains. Antonie van Leeuwenhoek 78:331–340PubMedCrossRefGoogle Scholar
  15. 15.
    Miller L, Berger T (1985) Bacterial identification by gas chromatography of whole cell fatty acids. Gaschromatography, Hewlett-Packard Application note, pp 228–241Google Scholar
  16. 16.
    Navarro-Llorens JM, Drzyzga O, Perera J (2008) Genetic analysis of phenylacetic acid catabolism in Arthrobacter oxydans CECT386. Arch Microbiol 190:89–100PubMedCrossRefGoogle Scholar
  17. 17.
    Rainey FA, Burghardt J, Kroppenstedt R, Klatte S, Stackebrandt E (1995) Polyphasic evidence for the transfer of Rhodococcus roseus to Rhodococcus rhodochrous. Int J Syst Bacteriol 45:101–103Google Scholar
  18. 18.
    Rainey FA, Burghardt J, Kroppenstedt R, Klatte S, Stackebrandt E (1995) Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origins of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141:523–528CrossRefGoogle Scholar
  19. 19.
    Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092PubMedGoogle Scholar
  20. 20.
    Rehfuss M, Urban J (2005) Rhodococcus phenolicus sp nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon source. Syst Appl Microbiol 28:695–701PubMedCrossRefGoogle Scholar
  21. 21.
    Van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261PubMedCrossRefGoogle Scholar
  22. 22.
    Van der Geize R, Yam K, Heuser T et al (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. PNAS 104:1947–1952PubMedCrossRefGoogle Scholar
  23. 23.
    Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Google Scholar
  24. 24.
    Yoon JH, Cho YG, Kang SS, Kim SB, Lee ST, Park YH (2000) Rhodococcus koreensis sp. nov., a 2,4 dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 50:1193–1201PubMedGoogle Scholar
  25. 25.
    Yoon JH, Kang SS, Cho YG, Lee ST, Kho YH, Kim CJ, Park YH (2000) Rhodococcus pyridinivorans sp. nov., a pyridine-degrading bacterium. Int J Syst Evol Microbiol 50:2173–2180PubMedGoogle Scholar
  26. 26.
    Zaitsev GM, Uotila JS, Tsitko IV, Lobanok AG, Salkinoja-Salonen MS (1995) Utilization of halogenated benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl Environ Microbiol 44:4191–4201Google Scholar
  27. 27.
    Zhukov DV, Murygina VP, Kalyuzhnyi SV (2007) Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis. Appl Biochem Microbiol 43:587–592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Laura Fernández de las Heras
    • 1
  • Esther García Fernández
    • 1
  • J. María Navarro Llorens
    • 1
  • Julián Perera
    • 1
  • Oliver Drzyzga
    • 1
    Email author
  1. 1.Departamento de Bioquímica y Biología Molecular IUniversidad Complutense de MadridMadridSpain

Personalised recommendations