Current Microbiology

, Volume 59, Issue 2, pp 206–211

The High Biofilm-Encoding Bee Locus: A Second Pilus Gene Cluster in Enterococcus faecalis?

  • Susanne Schlüter
  • Charles M. A. P. Franz
  • Frank Gesellchen
  • Oliver Bertinetti
  • Friedrich W. Herberg
  • Friedrich R. J. Schmidt
Article

Abstract

An Enterococcus faecalis mutant strain with a reduced ability for biofilm formation and primary attachment when compared to the high biofilm-forming wild-type strain was characterized by molecular biological and proteomic approaches. A point mutation in the srt-1 gene, which encodes a sortase-type enzyme and is part of the recently described bee (biofilm enhancer in Enterococcus) gene cluster, could be identified in the mutant strain. The Srt-1 deficiency resulted in a loss of the Bee-2 protein within a high molecular weight complex in cell surface protein extracts, as determined by mass spectrometry. These findings strongly suggest a specific linkage of Bee-2 to Bee-1 and Bee-3 within a complex by Srt-1. Furthermore, the identification of specific pilin motifs conserved in surface proteins of gram-positive bacteria indicated a possible involvement of the bee genes in the formation of pili structures, and may thus play a role in enhancing biofilm formation in Enterococcus faecalis.

References

  1. 1.
    Baldassarri L, Cecchini R, Bertuccini L et al (2001) Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Med Microbiol Immunol 190:113–120PubMedGoogle Scholar
  2. 2.
    Christensen GD, Baddour LM, Simpson WA (1987) Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo. Infect Immun 55:2870–2877PubMedGoogle Scholar
  3. 3.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193PubMedCrossRefGoogle Scholar
  4. 4.
    Dowidar N, Moesgaard F, Matzen P (1991) Clogging and other complications of endoscopic biliary endoprostheses. Scand J Gastroenterol 26:1132–1136PubMedCrossRefGoogle Scholar
  5. 5.
    Gesellchen F, Bertinetti O, Herberg FW (2006) Posttranslational modifications in proteomics. Biochimica et Biophysica Acta 1764:1788–1800PubMedGoogle Scholar
  6. 6.
    Graves LM, Swaminathan B (2001) PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulse-field gel electrophoresis. Int J Food Microbiol 65:55–62PubMedCrossRefGoogle Scholar
  7. 7.
    Hancock LE, Perego M (2004) The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186:5629–5639PubMedCrossRefGoogle Scholar
  8. 8.
    Heikens E, Bonten MJM, Willems RJL (2007) Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol 189:8233–8240PubMedCrossRefGoogle Scholar
  9. 9.
    Hufnagel M, Koch S, Creti R et al (2004) A putative sugar-binding transcriptional regulator in a novel gene locus in Enterococcus faecalis contributes to production of biofilm and prolonged bacteremia in mice. J Infect Dis 189:420–430PubMedCrossRefGoogle Scholar
  10. 10.
    Keane PF, Bonner MC, Johnston SR et al (1994) Characterization of biofilm and encrustation on ureteric stents in vivo. Br J Urol 73:687–691PubMedCrossRefGoogle Scholar
  11. 11.
    Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Ann Rev Microbiol 54:413–437CrossRefGoogle Scholar
  12. 12.
    LeMieux J, Hava DL, Basset A et al (2006) RrgA and RrgB are components of a multisubunit pilus encoded by the Streptococcus pneumoniae rlrA pathogenicicty islet. Infect Immun 74:2453–2456PubMedCrossRefGoogle Scholar
  13. 13.
    Mandlik A, Swierczynski A, Das A et al (2008) Pili in gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40PubMedCrossRefGoogle Scholar
  14. 14.
    Manetti AG, Zingaretti C, Falugi F et al (2007) Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol Microbiol 64:968–983PubMedCrossRefGoogle Scholar
  15. 15.
    Marraffini LA, DeDent AC, Schneewind O (2006) Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiol Mol Biol Rev 70:192–221PubMedCrossRefGoogle Scholar
  16. 16.
    Mohamed JA, Huang W, Nallapareddy SR et al (2004) Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect Immun 72:3658–3663PubMedCrossRefGoogle Scholar
  17. 17.
    Nallapareddy SR, Singh KV, Sillanpää J et al (2006) Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Clin Invest 116:2799–2807PubMedCrossRefGoogle Scholar
  18. 18.
    Paulsen IT, Banerjei L, Myers GS et al (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenfeld J, Capdevielle J, Guillemot JC et al (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203:173–179PubMedCrossRefGoogle Scholar
  20. 20.
    Sandoe JA, Witherden IR, Cove JH et al (2003) Correlation between enterococcal biofilm formation in vitro and medical-device-related infection potential in vivo. J Med Microbiol 52:547–550PubMedCrossRefGoogle Scholar
  21. 21.
    Tendolkar PM, Baghdayan AS, Shankar N (2004) Enterococcal Surface Protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun 72:6032–6039PubMedCrossRefGoogle Scholar
  22. 22.
    Tendolkar PM, Baghdayan AS, Shankar N (2006) Putative surface proteins encoded within a novel transferable locus confer a high-biofilm phenotype to Enterococcus faecalis. J Bacteriol 188:2063–2072PubMedCrossRefGoogle Scholar
  23. 23.
    Tenover FC, Arbeit RD, Goering RV et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239PubMedGoogle Scholar
  24. 24.
    Toledo-Arana A, Valle J, Solano C et al (2001) The Enterococcal Surface Protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67:4538–4545PubMedCrossRefGoogle Scholar
  25. 25.
    Ton-That H, Marraffini LA, Schneewind O (2004) Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol Microbiol 53:251–261PubMedCrossRefGoogle Scholar
  26. 26.
    Top J, Schouls LM, Bonten MJM, Willems RJL (2004) Multiple-locus variable-number tandem repeat analysis, a novel typing scheme to study the genetic relatedness and epidemiology of Enterococcus faecium isolates. J Clin Microbiol 42:4503–4511PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Susanne Schlüter
    • 1
  • Charles M. A. P. Franz
    • 2
  • Frank Gesellchen
    • 3
  • Oliver Bertinetti
    • 3
  • Friedrich W. Herberg
    • 3
  • Friedrich R. J. Schmidt
    • 1
  1. 1.Department of MicrobiologyUniversity of KasselKasselGermany
  2. 2.Max Rubner-Institute, Federal Research Institute for Nutrition and FoodKarlsruheGermany
  3. 3.Department of BiochemistryUniversity of KasselKasselGermany

Personalised recommendations