Advertisement

Current Microbiology

, Volume 59, Issue 1, pp 88–94 | Cite as

Conjugal Transformation and Transposon and Chemical Mutagenesis of Gram-Negative Selenate-Respiring Citrobacter sp. Strain JSA

  • Toshifumi SakaguchiEmail author
  • Masaki Kato
  • Naoki Kuriyama
  • Harutaka Niiyama
  • Shougo Hamada
  • Yasutaka Morita
  • Eiichi Tamiya
Article

Abstract

Conjugal mating between selenate-reducing Citrobacter sp. strain JSA and Escherichia coli S17-1 bearing pSUP2021 allowed transposon mutagenesis and chromosomal transformation. Kanamycin-resistant transconjugants were obtained successfully by this method from a freshwater selenate-respiring Citrobacter sp. strain JSA. The maximum frequency of kanamycin-resistant Tn5 transconjugants was 3.6 × 10−6 per recipient of this strain. Of these transconjugants, eight strains of selenate reduction-deficient transconjugants living by nitrate reduction were obtained in the strain JSA. Moreover, the same phenotype of deficient mutant was created by chemical mutagenesis with ethylmethanesulfonate. The results strongly indicate that selenate reducing anaerobic respiration was independent of nitrate reduction in the Citrobacter sp. isolate strain JSA.

Keywords

Selenate Nitrate Reduction Anaerobic Growth Isolation Medium Sodium Selenate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully thank Dr. A. Pühler (W. Arnold, Universität Bielefeld, Germany) for the gift of Escherichia coli S17-1 harboring the plasmid pSUP1021. This work was partly supported by the Sasagawa Scientific Research Grant (research number: 14-381 M) from The Japan Science Society.

References

  1. 1.
    Bagdasarian M, Lurz R, Rückert R, Franklin FHC, Bagdasarian MM, Frey J, Timmis KN (1981) Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 16:237–247PubMedCrossRefGoogle Scholar
  2. 2.
    Bébien M, Kirsch J, Méjean V, Verméglio A (2002) Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. Microbiology 148:3865–3872PubMedGoogle Scholar
  3. 3.
    Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30CrossRefGoogle Scholar
  4. 4.
    Blum JS, Stolz JF, Oren A, Oremland RS (2001) Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch Microbiol 175:208–219PubMedCrossRefGoogle Scholar
  5. 5.
    Houng H-SH, Noon KF, Ou JT, Baron LS (1992) Expression of Vi antigen in Escherichia coli K-12: characterization of ViaB from Citrobacter freundii and indentity of ViaA with RcsB. J Bacteriol 174:5910–5915PubMedGoogle Scholar
  6. 6.
    Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23:305–314PubMedGoogle Scholar
  7. 7.
    Kraff T, Bowen A, Theis F, Macy JM (2000) Cloning and sequence of the genes encoding the periplasmic-cytochromeB-containing selenate reductase of Thauera selenatis. DNA Seq 10:365–377CrossRefGoogle Scholar
  8. 8.
    Losi ME, Frankenberger WT Jr (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a–1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079–3084PubMedGoogle Scholar
  9. 9.
    Macy JM, Rech S, Auling G, Dorch M, Stackbrabdt E (1993) Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 43:135–142PubMedGoogle Scholar
  10. 10.
    Narasingarao P, Häggblom MM (2007) Pelobacter seleniigenes sp. nov., a selenate-respiring bacterium. Int J Syst Evol Microbiol 57:1937–1942PubMedCrossRefGoogle Scholar
  11. 11.
    Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and cultutre: biogeochemical significance of a novel sulfate-independent respiration. Appl Environ Microbiol 60:3011–3019Google Scholar
  12. 12.
    Painter EP (1941) The chemistry and toxicity of selenium compounds with special reference to the selenium problem. Chem Rev 28:179–213CrossRefGoogle Scholar
  13. 13.
    Ridley H, Watts CA, Richardson DJ, Butler CS (2006) Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a–1 that are responsible for selective reduction of nitrate and selenate oxyanoins. Appl Environ Microbiol 72:5173–5180PubMedCrossRefGoogle Scholar
  14. 14.
    Sakaguchi T, Kuriyama N, Niiyama H, Morita Y, Tamiya E (2003) Selenium biomineralization by selenate-reducing bacteria. In: KobayashiY Ozawa H (ed) Biomineralization (BIOM2001): formation, diversity, evolution and application, proceedings of the 8th international symposium on biominelarization. Tokai University Press, Kanagawa, pp 259–262Google Scholar
  15. 15.
    Sambook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New YorkGoogle Scholar
  16. 16.
    Schröder I, Rech S, Krafft T, Macy JM (1997) Purification and characterization of the selenium reductase from Thauera selenatis. J Biol Chem 272:23765–23768PubMedCrossRefGoogle Scholar
  17. 17.
    Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791CrossRefGoogle Scholar
  18. 18.
    Sinder J, Gutsche I, Lin M, Baby S, Cox B, Butland G, Greenblatt J, Emili A, Houry WA (2006) Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA + ATPase. J Biol Chem 281:1532–1546CrossRefGoogle Scholar
  19. 19.
    Steinberg NA, Oremlamd RS (1990) Dissmilatory selenate reduction potential in a diversity of sediment types. Appl Environ Microbiol 56:3550–3557PubMedGoogle Scholar
  20. 20.
    Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627PubMedCrossRefGoogle Scholar
  21. 21.
    Stolz JF, Ellis DJ, Switzer-Blum J, Ahmann D, Lovley DR, Oremland RS (1999) Sulfurospirillum barnesii sp. nov., and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ε-Proteobacteria. Int J Syst Bacteriol 49:1177–1180PubMedCrossRefGoogle Scholar
  22. 22.
    Virlogeux I, Waxin H, Ecobichon C, Lee JO, Popoff MY (1996) Characterization of the rcsA and rcsB genes Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis. J Bacteriol 178:1691–1698PubMedGoogle Scholar
  23. 23.
    Yamamura S, Yamashita M, Fujimoto N, Kuroda M, Kashiwa M, Sei K, Fujita M, Ike M (2007) Bacillus selenatarsentis sp. nov., a selenate- and arsenate-reducing bacterium isolated from the effluent drain of a glass-manufacturing plant. Int J Syst Evol Microbiol 57:1060–1064PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Toshifumi Sakaguchi
    • 1
    Email author
  • Masaki Kato
    • 2
  • Naoki Kuriyama
    • 3
  • Harutaka Niiyama
    • 3
  • Shougo Hamada
    • 1
    • 3
  • Yasutaka Morita
    • 3
    • 2
  • Eiichi Tamiya
    • 4
    • 2
  1. 1.Department of Environmental SciencesPrefectural University of HiroshimaShobaraJapan
  2. 2.Japan Advanced Institute Science and TechnologySchool of Materials ScienceNomiJapan
  3. 3.Department of Biological and Environmental ChemistryKinki University, KyushuIizuka, FukuokaJapan
  4. 4.Department of Applied Physics, Nano-Biology DivisionOsaka UniversitySuitaJapan

Personalised recommendations