Current Microbiology

, Volume 58, Issue 6, pp 628–634 | Cite as

Improved Enrichment and Isolation of Polycyclic Aromatic Hydrocarbons (PAH)-Degrading Microorganisms in Soil Using Anthracene as a Model PAH

  • Rodrigo J. S. Jacques
  • Benedict C. Okeke
  • Fátima M. Bento
  • Maria C. R. Peralba
  • Flávio A. O. Camargo


Lack of attention to soil and microbial characteristics that influence PAHs degradation has been a leading cause of failures in isolation of efficient PAH degraders and bioaugumentation processes with microbial consortia. This study compared the classic method of isolation of PAHs-degraders with a modified method employing a pre-enrichment respirometric analysis. The modified enrichment of PAH degrading microorganisms using in vitro microcosm resulted to reduced enrichment period and more efficient PAH-degrading microbial consortia. Results indicate that natural soils with strong heterotrophic microbial activity determined through pre-enrichment analysis, are better suited for the isolation of efficient PAH degrading microorganisms with significant reduction of the enrichment period.


  1. 1.
    Altschul SF, Madden AA, Schaffer JH, Zhang Z, Zhang W, Lipman W (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. 2.
    Asubel FM, Brent RE, Kingston D (eds) (1997) Current protocols in molecular biology. New York, John Wiley and SonsGoogle Scholar
  3. 3.
    Bamforth S, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chemic Tech Biotech 80:723–736CrossRefGoogle Scholar
  4. 4.
    Berekaa MM, Steinbüchel A (2000) Microbial degradation of the multiply branched alkane 2, 6, 10, 15, 19, 23-hexamethyltetracosane (squalene) by Mycobacterium fortuitum and Mycobacterium ratisbonense. Appl Environ Microbiol 66:4462–4467PubMedCrossRefGoogle Scholar
  5. 5.
    Bhattacharya D, Sarma PM, Krishnan S, Mishra S, Lal B (2003) Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Appl Environ Microbiol 69:1435–1441PubMedCrossRefGoogle Scholar
  6. 6.
    Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019PubMedCrossRefGoogle Scholar
  7. 7.
    Bouchez T, Patureau D, Dabert P, Juretschko S, Dore J, Delgenes P (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2:179–190PubMedCrossRefGoogle Scholar
  8. 8.
    Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 39 stimulated by Cu++. Appl Microbiol Biotechnol 62:569–573PubMedCrossRefGoogle Scholar
  9. 9.
    Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333PubMedCrossRefGoogle Scholar
  10. 10.
    Chaillan F, Fleche LEA, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595PubMedCrossRefGoogle Scholar
  11. 11.
    Costerton JW, Lappin-Scott HM (1995) Introduction to microbial biofilms. In: Costerton JW, Lappin-Scott HM (eds) Microbial biofilms. The Press Syndicate of the University of Cambridge, Cambridge, pp 1–11Google Scholar
  12. 12.
    Cybulski Z, Dziurla E, Kaczorek E, Olszanowski A (2003) The influence of emulsifiers on hydrocarbon biodegradation by Pseudomonadaceae and Bacillacea strains. Spill Sci Tech Bull 8:503–507CrossRefGoogle Scholar
  13. 13.
    Dean SM, Jin Y, Cha DK, Wilson SV, Radosevich M (2001) Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfacant-producing bacteria. J Environ Qual 30:1126–1133PubMedCrossRefGoogle Scholar
  14. 14.
    Dore SY (2003) Naphtalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechn 63:194–199CrossRefGoogle Scholar
  15. 15.
    Ghazali FM, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbonsin soil by microbial consortium. Int Biodeterior Biodegrad 54:61–67CrossRefGoogle Scholar
  16. 16.
    Grosser RJ, Friedrich M, Ward DM, Inskeep WP (2000) Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl Environ Microbiol 66:2695–2702PubMedCrossRefGoogle Scholar
  17. 17.
    Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Biores Tech 99:2637–2643CrossRefGoogle Scholar
  18. 18.
    Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84PubMedCrossRefGoogle Scholar
  19. 19.
    Kazunga C, Aitken MD (2000) Products from incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon degrading bacteria. Appl Environ Microbiol 66:1917–1922PubMedCrossRefGoogle Scholar
  20. 20.
    Kiyohara H, Nagao K, Yana K (1982) Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol 43:454–457PubMedGoogle Scholar
  21. 21.
    Leys NM, Bastiaens L, Verstraete M, Springael D (2005) Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Appl Environ Microbiol 66:726–736Google Scholar
  22. 22.
    Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming H-C, Kroppenstedt RM, Steinbuchel A (2000) Biodegradation of cis-1, 4-polyisoprene rubbers by distinct actinomycetes: mycrobial strategies and detailed surface analysis. Appl Environ Microbiol 66:1639–1645PubMedCrossRefGoogle Scholar
  23. 23.
    Mutnuri S, Vasudevan N, Kastner M (2005) Degradation of anthracene and pyrene supplied by microcrystals and non-aqueousphase liquids. Appl Microbiol Biotechnol 67:569–576PubMedCrossRefGoogle Scholar
  24. 24.
    Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248PubMedCrossRefGoogle Scholar
  25. 25.
    Schabereiter-Gurtner C, Piñar G, Lubitz W, Rölleke S (2001) Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenitic 18S rDNA sequence analysis. J Microbiol Methods 47:345–354PubMedCrossRefGoogle Scholar
  26. 26.
    Schippers A, Bosecker K, Sproer C, Schumann CP (2005) Microbacterium oleivorans sp nov and Microbacterium hydrocarbon oxydans sp nov., novel crude-oil-degrading gram-positive bacteria. Int J Syst Evol Microbiol 55:655–660PubMedCrossRefGoogle Scholar
  27. 27.
    Seo J-S, Keum Y-S, Harada RM, Li QX (2007) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J Agric Food Chem 55:5383–5389PubMedCrossRefGoogle Scholar
  28. 28.
    Shuttleworth KL, Cerniglia CE (1996) Practical methods for the isolation of polycyclic aromatic hydrocarbon (PAH) degrading microrganisms and biodegradation intermediates. In: Hurst J et al (eds) Manual of environmental microbiology. Whashington, ASM, pp 766–775Google Scholar
  29. 29.
    Singer AC, van der Gast CJ, Thompson IP (2005) Perspectives and vision for strain selection in bioaugmentation. Trend Biotechn 23:74–77CrossRefGoogle Scholar
  30. 30.
    Stokes JD, Paton GI, Semple KT (2006) Behavior and assessment of bioavailability of organic contaminants in soil: relevance for risk assessment and remediation. Soil Use Manag 21:475–486CrossRefGoogle Scholar
  31. 31.
    Stotzky G (1965) Microbial respiration. In: Black CA (ed) Methods in soil analysis. SSSA, Madison, pp 1550–1572Google Scholar
  32. 32.
    Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915PubMedCrossRefGoogle Scholar
  33. 33.
    Van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135PubMedGoogle Scholar
  34. 34.
    Verdin A, Sahraoui ALH, Robinson G, Durand R (2005) Effect of the polycyclic aromatic hydrocarbon, benzo[a]pyrene, on the intracellular protein composition of Fusarium solani and Fusarium oxysporum. Int Biodeterior Biodegrad 55:171–174CrossRefGoogle Scholar
  35. 35.
    Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Marine Poll Bull 51:1071–1077CrossRefGoogle Scholar
  36. 36.
    Zhang HJ, Kallimanis AJ, Koukkou AIJ, Drainas CJ (2004) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65:124–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rodrigo J. S. Jacques
    • 1
  • Benedict C. Okeke
    • 2
  • Fátima M. Bento
    • 3
  • Maria C. R. Peralba
    • 4
  • Flávio A. O. Camargo
    • 5
  1. 1.Center of Rural SciencesFederal University of PampaSão GabrielBrazil
  2. 2.Department of BiologyAuburn University MontgomeryMontgomeryUSA
  3. 3.Department of MicrobiologyFederal University of Rio Grande do SulPorto AlegreBrazil
  4. 4.Department of Inorganic ChemistryFederal University of Rio Grande do SulPorto AlegreBrazil
  5. 5.Department of Environmental ScienceUniversity of California – RiversideRiversideUSA

Personalised recommendations