Advertisement

Current Microbiology

, Volume 58, Issue 5, pp 511–515 | Cite as

Marinobacterium marisflavi sp. nov., Isolated from a Costal Seawater

  • Hana Kim
  • Hyun-Myung Oh
  • Seung-Jo Yang
  • Jung-Sook Lee
  • Jae-Sang Hong
  • Jang-Cheon Cho
Article

Abstract

A marine bacterium designated strain IMCC4074T was isolated from surface seawater collected off Incheon Port, the Yellow Sea, and subjected to a polyphasic taxonomy. The strain was Gram-negative, chemoheterotrophic, slightly halophilic, strictly aerobic, and motile rods. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Marinobacterium litorale KCTC 12756T (93.9%) and shared low 16S rRNA gene sequence similarities with members of the genus Marinobacterium (91.8–93.9%) and the genus Neptunomonas (93.4%) in the order Oceanospirillales. Phylogenetic analyses showed that this marine isolate formed an independent phyletic line within the genus Marinobacterium clade. The DNA G+C composition of the strain was 56.0 mol% and the predominant constituents of the cellular fatty acids were C16:0 (28.0%), C16:1 ω7c and/or iso-C15:0 2-OH (19.3%), C18:1 ω7c (17.8%), and C17:1 cyclo (12.5%), which differentiated the strain from other Marinobacterium species. Based on the taxonomic data collected in this study, only a distant relationship could be found between strain IMCC4074T and other members of the genus Marinobacterium, thus the strain represents a novel species of the genus Marinobacterium, for which the name Marinobacterium marisflavi sp. nov. is proposed. The type strain of Marinobacterium marisflavi is IMCC4074T (= KCTC 12757T = LMG 23873T).

Keywords

Nile Blue Cellular Fatty Acid Profile Succinamic Acid Artificial Seawater Medium Oceanospirillales 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This study was supported by an Inha University Research Grant.

References

  1. 1.
    Baumann P, Bowditch RD, Baumann L, Beaman B (1983) Taxonomy of marine Pseudomonas species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P. nautica; and P. doudoroffii. Int J Syst Bacteriol 33:857–865Google Scholar
  2. 2.
    Bowditch RD, Baumann L, Baumann P (1984) Description of Oceanospirillum kriegii sp. nov. and O. jannaschii sp. nov. and assignment of two species of Alteromonas to this genus as O. commune comb. nov. and O. vagum comb. nov. Curr Microbiol 10:221–230CrossRefGoogle Scholar
  3. 3.
    Chang HW, Nam YD, Kwon HY, Park JR, Lee JS, Yoon JH, An KG, Bae JW (2007) Marinobacterium halophilum sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 57:77–80PubMedCrossRefGoogle Scholar
  4. 4.
    Cho J-C, Giovannoni SJ (2003) Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. Int J Syst Evol Microbiol 53:1031–1036PubMedCrossRefGoogle Scholar
  5. 5.
    Choo YJ, Lee K, Song J, Cho JC (2007) Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘Verrucomicrobia’. Int J Syst Evol Microbiol 57:532–537PubMedCrossRefGoogle Scholar
  6. 6.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  7. 7.
    Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 27:401–410Google Scholar
  8. 8.
    González JM, Mayer F, Moran MA, Hodson RE, Whitman WB (1997) Microbulbifer hydrolyticus gen, nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376PubMedGoogle Scholar
  9. 9.
    Jorgensen JH, Turnidge JD, Washington JA (1999) Antibacterial susceptibility tests: dilution and disk diffusion methods. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds) Manual of clinical microbiology. American Society for Microbiology, Washington, DC, pp 1526–1543Google Scholar
  10. 10.
    Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132Google Scholar
  11. 11.
    Kim H, Choo YJ, Song J, Lee JS, Lee KC, Cho JC (2007) Marinobacterium litorale sp. nov. in the order Oceanospirillales. Int J Syst Evol Microbiol 57:1659–1662PubMedCrossRefGoogle Scholar
  12. 12.
    Kim YG, Jin YA, Hwang CY, Cho BC (2008) Marinobacterium rhizophilum sp. nov., isolated from the rhizosphere of the coastal tidal-flat plant Suaeda japonica. Int J Syst Evol Microbiol 58:164–167PubMedCrossRefGoogle Scholar
  13. 13.
    Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703PubMedCrossRefGoogle Scholar
  14. 14.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  15. 15.
    Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167Google Scholar
  16. 16.
    Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athayle M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  17. 17.
    Ostle AG, Holt JG (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44:238–241PubMedGoogle Scholar
  18. 18.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  19. 19.
    Satomi M, Kimura B, Hamada T, Harayama S, Fujii T (2002) Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52:739–747PubMedCrossRefGoogle Scholar
  20. 20.
    Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  21. 21.
    Swofford D (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  22. 22.
    Zhang R, Liu B, Lau SC, Ki JS, Qian PY (2007) Particle-attached and free-living bacterial communities in a contrasting marine environment: Victoria Harbor, Hong Kong. FEMS Microbiol Ecol 61:496–508PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hana Kim
    • 1
  • Hyun-Myung Oh
    • 1
  • Seung-Jo Yang
    • 1
  • Jung-Sook Lee
    • 2
  • Jae-Sang Hong
    • 1
  • Jang-Cheon Cho
    • 1
  1. 1.Division of Biology and Ocean SciencesInha UniversityIncheonRepublic of Korea
  2. 2.Korean Collection for Type Cultures, Biological Resource CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea

Personalised recommendations