Advertisement

Current Microbiology

, Volume 57, Issue 5, pp 497–502 | Cite as

Long-Term Survival of Legionella pneumophila in the Viable But Nonculturable State After Monochloramine Treatment

  • Laëtitia Alleron
  • Nicole Merlet
  • Christian Lacombe
  • Jacques Frère
Article

Abstract

Legionella pneumophila, a facultative intracellular human pathogen, can persist for long periods in natural and artificial aquatic environments. Eradication of this bacterium from plumbing systems is often difficult. We tested L. pneumophila survival after monochloramine treatment. Survival was monitored using the BacLight Bacterial Viability Kit (Molecular Probes), ChemChrome V6 Kit (Chemunex), quantitative polymerase chain reaction and culturability on buffered charcoal–yeast extract agar. In nonculturable samples, regain of culturability was obtained after addition of the amoeba Acanthamoeba castellanii, and esterase activity and membrane integrity were observed after >4 months after treatment. These results demonstrate for the first time that L. pneumophila could persist for long periods in biofilms into the viable but nonculturable (VBNC) state. Monitoring L. pneumophila in water networks is generally done by enumeration on standard solid medium. This method does not take into account VBNC bacteria. VBNC L. pneumophila could persist for long periods and should be resuscitated by amoeba. These cells constitute potential sources of contamination and should be taken into account in monitoring water networks.

Keywords

Total Organic Carbon Esterase Activity Plumbing System Dead Bacterium VBNC State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are sincerely grateful to Michael Steinert for providing the A. castelanii strain. Many thanks to Yann Héchard for help in the amoeba experiments. Manilduth Ramnath is gratefully acknowledged for valuable review of the text. The research of L. Alleron has been made possible by a fellowship from the Région Poitou-Charentes (France).

References

  1. 1.
    Abu Kwaik Y, Venkataraman C, Harb OS, Gao LY (1998) Signal transduction in the protozoan host Hartmannella vermiformis upon attachment and invasion by Legionella micdadei. Appl Environ Microbiol 64:3134–3139PubMedGoogle Scholar
  2. 2.
    Bitar DM, Molmeret M, Abu Kwaik Y (2004) Molecular and cell biology of Legionella pneumophila. Int J Med Microbiol 293:519–527PubMedCrossRefGoogle Scholar
  3. 3.
    Molmeret M, Bitar DM, Han L, Kwaik YA (2004) Cell biology of the intracellular infection by Legionella pneumophila. Microbes Infect 6:129–139PubMedCrossRefGoogle Scholar
  4. 4.
    Molofsky AB, Swanson MS (2004) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40PubMedCrossRefGoogle Scholar
  5. 5.
    Vogel JP, Isberg RR (1999) Cell biology of Legionella pneumophila. Curr Opin Microbiol 2:30–34PubMedCrossRefGoogle Scholar
  6. 6.
    Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15:506–526PubMedCrossRefGoogle Scholar
  7. 7.
    Barker J, Brown MR, Collier PJ, Farrell I, Gilbert P (1992) Relationship between Legionella pneumophila and Acanthamoeba polyphaga: physiological status and susceptibility to chemical inactivation. Appl Environ Microbiol 58:2420–2425PubMedGoogle Scholar
  8. 8.
    Borella P, Guerrieri E, Marchesi I, Bondi M, Messi P (2005) Water ecology of Legionella and protozoan: environmental and public health perspectives. Biotechnol Annu Rev 11:355–380PubMedCrossRefGoogle Scholar
  9. 9.
    Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100PubMedGoogle Scholar
  10. 10.
    Alleron L, Frère J, Merlet N, Legube B (2006) Monochloramine Treatment induces viable but nonculturable (VBNC) state into biofilm and planktonic Legionella pneumophila populations. In: Cianciotto N (ed) Legionella: state of the art 30 years after its recognition. ASM Press, Washington, DC, pp 533–537Google Scholar
  11. 11.
    Bej AK, Mahbubani MH, Atlas RM (1991) Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods. Appl Environ Microbiol 57:597–600PubMedGoogle Scholar
  12. 12.
    Garcia MT, Jones S, Pelaz C, Millar RD, Abu Kwaik Y (2007) Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. Environ Microbiol 9:1267–1277PubMedCrossRefGoogle Scholar
  13. 13.
    Ohno A, Kato N, Yamada K, Yamaguchi K (2003) Factors influencing survival of Legionella pneumophila serotype 1 in hot spring water and tap water. Appl Environ Microbiol 69:2540–2547PubMedCrossRefGoogle Scholar
  14. 14.
    Steinert M, Emody L, Amann R, Hacker J (1997) Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. App Environ Microbiol 63:2047–2053Google Scholar
  15. 15.
    Thomas V, Bouchez T, Nicolas V, Robert S, Loret JF, Levi Y (2004) Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J Appl Microbiol 97:950–963PubMedCrossRefGoogle Scholar
  16. 16.
    Kool JL (2002) Control of Legionella in drinking water systems: impact of monochloramine. In: Abu Kwaik Y, Cianciotto NP, Bartlett C, Fields BS, Frosch M, Hacker J (eds) Legionella: Proceedings of the Fifth International Symposium. ASM Press, Washington, DC, pp 411–418Google Scholar
  17. 17.
    Kool JL, Carpenter JC, Fields BS (1999) Effect of monochloramine disinfection of municipal drinking water on risk of nosocomial Legionnaires’ disease. Lancet 353:272–277PubMedCrossRefGoogle Scholar
  18. 18.
    Momba MN, Binda MA (2002) Combining chlorination and chloramination processes for the inhibition of biofilm formation in drinking surface water system models. J Appl Microbiol 92:641–648PubMedCrossRefGoogle Scholar
  19. 19.
    Hoebe CJ, Kool JL (2000) Control of legionella in drinking-water systems. Lancet 355:2093–2094PubMedCrossRefGoogle Scholar
  20. 20.
    Dolan R, Murga R, Carpenter J, Brown E, Besser R, Fields B (2002) Monochloramine disinfection of biofilm-associated Legionella pneumophila in a potable water model system. In: Marre R, Abu Kwaik Y, Cianciotto NP, Bartlett C, Fields BS, Frosch M (eds) Legionella: Proceedings of the Fifth International Symposium. ASM Press, Washington, DC, pp 406–410Google Scholar
  21. 21.
    Turetgen I (2004) Comparison of the efficacy of free residual chlorine and monochloramine against biofilms in model and full scale cooling towers. Biofouling 20:81–85PubMedCrossRefGoogle Scholar
  22. 22.
    Schuster FL (2002) Cultivation of pathogenic and opportunistic free-living amebas. Clin Microbiol Rev 15:342–354PubMedCrossRefGoogle Scholar
  23. 23.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  24. 24.
    Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290PubMedCrossRefGoogle Scholar
  25. 25.
    Walker JT, Bradshaw DJ, Bennett AM, Fulford MR, Martin MV, Marsh PD (2000) Microbial biofilm formation and contamination of dental-unit water systems in general dental practice. Appl Environ Microbiol 66:3363–3367PubMedCrossRefGoogle Scholar
  26. 26.
    Wellinghausen N, Frost C, Marre R (2001) Detection of legionellae in hospital water samples by quantitative real-time LightCycler PCR. Appl Environ Microbiol 67:3985–3993PubMedCrossRefGoogle Scholar
  27. 27.
    Yanez MA, Carrasco-Serrano C, Barbera VM, Catalan V (2005) Quantitative detection of Legionella pneumophila in water samples by immunomagnetic purification and real-time PCR amplification of the dotA gene. Appl Environ Microbiol 71:3433–3441PubMedCrossRefGoogle Scholar
  28. 28.
    Yaradou DF, Hallier-Soulier S, Moreau S, Poty F, Hillion Y, Reyrolle M et al (2007) Integrated real-time PCR for detection and monitoring of Legionella pneumophila in water systems. Appl Environ Microbiol 73:1452–1456PubMedCrossRefGoogle Scholar
  29. 29.
    Rompre A, Servais P, Baudart J, de-Roubin MR, Laurent P (2002) Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 49:31–54PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Laëtitia Alleron
    • 1
  • Nicole Merlet
    • 1
  • Christian Lacombe
    • 1
  • Jacques Frère
    • 1
  1. 1.Laboratoire de Chimie et de Microbiologie de l’EauUniversity of PoitiersPoitiers CedexFrance

Personalised recommendations