Current Microbiology

, Volume 57, Issue 2, pp 107–110 | Cite as

Isolation and Characterization of New Cyclohexylacetic Acid-Degrading Bacteria

  • Hiroaki Iwaki
  • Emiko Nakai
  • Shota Nakamura
  • Yoshie Hasegawa


Six cyclohexylacetic acid-degrading strains were isolated from soil samples in Japan and identified as members of the genera Cupriavidus (strain KUA-1), Rhodococcus, and Dietzia by 16S rRNA gene sequence analysis. For the first time members of these genera were shown to be capable of degrading cyclohexylacetic acid. A selected strain, KUA-1, which is the first reported Gram-negative organism capable of growth on cyclohexylacetic acid, was identified as a Cupriavidus metallidurans, based on morphologic and physiologic characteristics and its 16S rRNA gene sequence. Metabolite analysis by HPLC-MS indicated that 1-cyclohexenylacetic acid is an intermediate of cyclohexaneacetic acid metabolism in strain KUA-1.


Cyclohexanone Mineral Salt Medium Cyclohexanecarboxylic Acid Late Logarithmic Growth Phase Yokogawa Analytical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was financially supported in part by Kansai University Research Grants: Grant-in-Aid for Encouragement of Scientists, 2007.


  1. 1.
    Barrow GI, Feltham RKA (1993) Cowan and Steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge, UK: Cambridge University PressGoogle Scholar
  2. 2.
    Beam HW, Perry JJ (1974) Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. J Bacteriol 118:394–399PubMedGoogle Scholar
  3. 3.
    Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) (2005) Bergey’s manual of systematic bacteriology, Vol. 2. The Proteobacteria, Part C: the Alpha-, Beta-, Delta-, and Epsilonproteobacteria, 2nd edn. Springer, New YorkGoogle Scholar
  4. 4.
    Brzostowicz PC, Blasko MS, Rouviere PE (2002) Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU. Appl Microbiol Biotechnol 58:781–789 for the first timePubMedCrossRefGoogle Scholar
  5. 5.
    Cheng Q, Thomas SM, Kostichka K, Valentine JR, Nagarajan V (2000) Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by in vitro transposition. J Bacteriol 182:4744–4751PubMedCrossRefGoogle Scholar
  6. 6.
    Dong JZ, Vorkink WP, Lee ML (1993) Origin of long-chain alkylcyclohexanes and alkylbenzenes in a coal-bed wax. Geochim Cosmochim Acta 57:837–849CrossRefGoogle Scholar
  7. 7.
    Dutta TK, Harayama S (2001) Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl Environ Microbiol 67:1970–1974PubMedCrossRefGoogle Scholar
  8. 8.
    Fowler MG, Abolins P, Douglas AG (1986) Monocyclic alkanes in Ordovician organic-matter. Org Geochem 10:815–823CrossRefGoogle Scholar
  9. 9.
    Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782PubMedGoogle Scholar
  10. 10.
    Iwaki H, Hasegawa Y, Teraoka M, Tokuyama T, Bernard L, Lau PCK (2003) Cyclohexanol biodegradation genes: a pathway of opportunities. Biocatalysis Polym Sci 840:80–92Google Scholar
  11. 11.
    Iwaki H, Saji H, Abe K, Hasegawa Y (2005) Cloning and sequence analysis of the 4-hydroxybenzoate 3-hydroxylase gene from a cyclohexanecarboxylate-degrading gram-positive bacterium, “Corynebacterium cyclohexanicum” strain ATCC 51369. Microbes Environ 20:144–150CrossRefGoogle Scholar
  12. 12.
    Iwaki H, Wang S, Grosse S, Bergeron H, Nagahashi A, Lertvorachon J, Yang J, Konishi Y, Hasegawa Y, Lau PCK (2006) Pseudomonad cyclopentadecanone monooxygenase displaying an uncommon spectrum of Baeyer-Villiger oxidations of cyclic ketones. Appl Environ Microbiol 72:2707–2720PubMedCrossRefGoogle Scholar
  13. 13.
    Iwaki H, Hasegawa Y (2007) Degradation of 2-nitrobenzoate by Burkholderia terrae strain KU-15. Biosci Biotechnol Biochem 71:145–151PubMedCrossRefGoogle Scholar
  14. 14.
    Iwaki H, Zhang T, Hasegawa Y (2008) Degradation of monohydroxylated benzoates by strain KUFI-6N of the yeast-like fungus Exophiala jeanselmei. World J Microbiol Biotechnol 24:289–290CrossRefGoogle Scholar
  15. 15.
    Jenni B, Realini L, Aragno M, Tamer AU (1988) Taxonomy of non H-2 lithotrophic, oxalate-oxidizing bacteria related to Alcaligenes eutrophus. System Appl Microbiol 10:126–133Google Scholar
  16. 16.
    Kissin YV (1990) Catagenesis of light cycloalkanes in petroleum. Org Geochem 15:575–594CrossRefGoogle Scholar
  17. 17.
    Koma D, Hasumi F, Chung SY, Kubo M (2003) Biodegradation of n-alkylcyclohexanes by co-oxidation via multiple pathways in Acinetobacter sp. ODDK71. J Biosci Bioeng 95:641–644PubMedGoogle Scholar
  18. 18.
    Koma D, Sakashita Y, Kubota K, Fujii Y, Hasumi F, Chung SY, Kubo M (2005) Degradation pathways of cyclic alkanes in Rhodococcus sp. NDKK48. Appl Microbiol Biotechnol 66:92–99CrossRefGoogle Scholar
  19. 19.
    Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus – masters of catabolic versatility. Curr Opin Biotechnol 16:282–290PubMedCrossRefGoogle Scholar
  20. 20.
    Ougham HJ, Trudgill PW (1982) Metabolism of cyclohexaneacetic acid and cyclohexanebutyric acid by Arthrobacter sp. strain CA1. J Bacteriol 150:1172–1182PubMedGoogle Scholar
  21. 21.
    Perry JJ (1984) Microbial metabolism of cyclic alkanes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 61–98Google Scholar
  22. 22.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  23. 23.
    von der Weid I, Marques JM, Cunha CD, Lippi RK, Dos Santos SC, Rosado AS, Lins U, Seldin L (2007) Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Syst Appl Microbiol 30:331–339PubMedCrossRefGoogle Scholar
  24. 24.
    Williams JA, Dolcater DL, Torkelson BE, Winters JC (1988) Anomalous concentrations of specific alkylaromatic and alkylcycloparaffin components in west Texas and Michigan crude oils. Org Geochem 13:47–60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hiroaki Iwaki
    • 1
  • Emiko Nakai
    • 1
  • Shota Nakamura
    • 1
  • Yoshie Hasegawa
    • 1
  1. 1.Department of Life Science and BiotechnologyKansai UniversityOsakaJapan

Personalised recommendations