Advertisement

Current Microbiology

, Volume 56, Issue 6, pp 639–644 | Cite as

Rhamnolipid–Biosurfactant Permeabilizing Effects on Gram-Positive and Gram-Negative Bacterial Strains

  • A. V. Sotirova
  • D. I. Spasova
  • D. N. Galabova
  • E. Karpenko
  • A. Shulga
Article

Abstract

The potential of biosurfactant PS to permeabilize bacterial cells of Pseudomonas aeruginosa, Escherichia coli, and Bacillus subtilis on growing (in vivo) and resting (in vitro) cells was studied. Biosurfactant was shown to have a neutral or detrimental effect on the growth of Gram-positive strains, and this was dependent on the surfactant concentration. The growth of Gram-negative strains was not influenced by the presence of biosurfactant in the media. Cell permeabilization with biosurfactant PS was shown to be more effective with B. subtilis resting cells than with Pseudomonas aeruginosa. Scanning-electron microscopy observations showed that the biosurfactant PS did not exert a disruptive action on resting cells such that it was detrimental to the effect on growing cells of B. subtilis. Low critical micelle concentrations, tender action on nongrowing cells, and neutral effects on the growth of microbial strains at low surfactant concentrations make biosurfactant PS a potential candidate for application in different industrial fields, in environmental bioremediation, and in biomedicine.

Keywords

Surfactant Alginate Interfacial Tension Extracellular Protein Biosurfactants 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Grant No. K-1206/02 from the National Council of Scientific Research at the Bulgarian Ministry of Education and Science and Scientific and Technological Cooperation Joint Project for Years 2005 to 2007 between the Bulgarian and Ukrainian Ministries of Education and Science.

References

  1. 1.
    Alexieva Z, Gerginova M, Zlateva P, Peneva N (2004) Comparison of growth kinetics and phenol metabolizing enzymes of Trichosporon cutaneum R57 and mutants with modified degradation abilities. Enzyme Microb Technol 34:242–247CrossRefGoogle Scholar
  2. 2.
    Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid induced removal of lipopolysacharide from Pseudomonas aeruginosa: Effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268PubMedCrossRefGoogle Scholar
  3. 3.
    Ayres HM, Payne DN, Furr JR, Russell AD (1998) Effect of permeabilizing agents on antibacterial activity against a simple Pseudomonas aeruginosa biofilm. Lett Appl Microbiol 27:79–82PubMedCrossRefGoogle Scholar
  4. 4.
    Bansal-Mutalik R, Gaikar VG (2006) Reverse micellar solutions aided permeabilization of baker’s yeast. Process Biochem 41:133–245CrossRefGoogle Scholar
  5. 5.
    Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168PubMedCrossRefGoogle Scholar
  6. 6.
    Benchekroun K, Bonaly R (1992) Physiological properties and plasma membrane composition of Saccharomyces cerevisiae grown in sequential batch culture and in the presence of surfactants. Appl Microbiol Biotechnol 36:673–678CrossRefGoogle Scholar
  7. 7.
    Cánovas M, Torroglosa T, Iborra JL (2005) Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into L-carnitine. Enzyme Microb Technol 37:300–308CrossRefGoogle Scholar
  8. 8.
    Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedGoogle Scholar
  9. 9.
    Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: Potential and limitations of microbial whole-sell hydrosylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425PubMedCrossRefGoogle Scholar
  10. 10.
    Galabova D, Tuleva B, Spasova D (1996) Permeabilization of Yarrowia lipolytica cells by triton X-100. Enzyme Microb Technol 18:18–22CrossRefGoogle Scholar
  11. 11.
    Karpenko EV, Shulga AN, Vildanova-Marzishin RI, Elyseev SA, Turovsky AA, Tshegliva NS (1996) Surface-active compounds of Pseudomonas sp.S-17 strain. Microbiol J (Ukraina) 52:78–82Google Scholar
  12. 12.
    Karpenko OV, Martynyuk NB, Shulga OM, Shcheglova NS et al (2004) Surface-active biopreparation. Patent of Ukraine 71792 A. Bulletin No. 12Google Scholar
  13. 13.
    King AT, Davey MR, Mellor IR, Mulligan BJ, Lowe KC (1991) Surfactant effects on yeast cells. Enzyme Microb Technol 13:148–153CrossRefGoogle Scholar
  14. 14.
    Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Apple Microbiol Biotechnol 51:22–32CrossRefGoogle Scholar
  15. 15.
    León R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23:483–500CrossRefGoogle Scholar
  16. 16.
    Nielsen L, Kadavy D, Rajagopal S, Drijber R, Kenneth W (2005) Survey of extreme solvent tolerance in gram-positive cocci: Membrane fatty acid changes in Staphylococcushaemolyticus grown in toluene. Appl Environ Microbiol 71:5171–5176PubMedCrossRefGoogle Scholar
  17. 17.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  18. 18.
    Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198PubMedCrossRefGoogle Scholar
  19. 19.
    Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A et al (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768PubMedCrossRefGoogle Scholar
  20. 20.
    Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162PubMedCrossRefGoogle Scholar
  21. 21.
    Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D (2007) Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res. doi:  10.1016/j.micres.2007.01.005
  22. 22.
    Sotirova А, Spasova D, Vasileva-Tonkova, Stoyanova D, Galabova D (2006) Biological properties of biosurfactant complex from Pseudomonas sp. PS-17. Proceedings of the 11th Congress of the Bulgarian Microbiologists with International Participation. 5–7 October, 2006 Varna (in press)Google Scholar
  23. 23.
    Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxiribonucleate. Proc Natl Acad Sci U S A 44:1072–1078PubMedCrossRefGoogle Scholar
  24. 24.
    Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245PubMedGoogle Scholar
  25. 25.
    Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282PubMedGoogle Scholar
  26. 26.
    Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61:2247–2251PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. V. Sotirova
    • 1
  • D. I. Spasova
    • 2
  • D. N. Galabova
    • 1
  • E. Karpenko
    • 3
  • A. Shulga
    • 3
  1. 1.Department of Microbial Biochemistry and Biosynthesis, The Stephan Angeloff Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Microbial UltrastructureBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Institute of Physical ChemistryUkrainian Academy of SciencesLvivUkraine

Personalised recommendations