Current Microbiology

, Volume 56, Issue 6, pp 603–608 | Cite as

Biostraticola tofi gen. nov., spec. nov., A Novel Member of the Family Enterobacteriaceae

  • Susanne Verbarg
  • Anja Frühling
  • Sylvie Cousin
  • Evelyne Brambilla
  • Sabine Gronow
  • Heinrich Lünsdorf
  • Erko Stackebrandt
Article

Abstract

Bacterial strain BF36T, isolated from the biofilm of a tufa deposit in a hard water rivulet, was characterized by a polyphasic taxonomic approach. Cells of these organisms were Gram-negative, motile, nonpigmented, rod-shaped, non-endospore-forming, and facultatively anaerobic. Cells, organized in loose consortia, were coated by a massive slime layer. Phylogenetic analyses using 16S rRNA gene sequences showed that strain BF36T was a member of the family Enterobacteriaceae, class Gammaproteobacteria, displaying a moderate degree of relationship (96.5% sequence similarity) to Sodalis glossinidius and “Sodalis pallipedes,” intracellular symbionts of the tsetse fly Glossinis morsitans morsitans. Dendrograms of relationship generated by different algorithms consistently grouped isolate BF36T with Sodalis glossinidius, Pragia fontium, Budvicia aquatica, Serratia rubideae, and Brenneria spp (94.7–95.8% similarity) which also share many common metabolic properties. Differences between strain BF36T and Sodalis glossinidius DSM 13495T are seen in motility and in the pattern of substrates utilized. Membership to the family was also confirmed by a fatty acid profile consisting of major amounts of C16:0 and C16:1ω7, by the presence of isoprenoids of the ubiquinone Q8 and menaquinone MK8 types and a DNA G + C content of 54.2 mol%. The decision to classify strain BF36T into a new genus Biostraticola gen. nov. is based on its distant phylogenetic position as compared to any other representative of the family and the significant phenotypic differences to its nearest phylogenetic neighbor, Sodalis glossinidius. BF36T represents the type species, for which the name Biostraticola tofi sp. nov. is proposed. The type strain is BF36T (DSM 19580T; CIP109699T).

References

  1. 1.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. 2.
    Beard CB, O’Neill SL, Mason P, Mandelco L, Woese CR, Tesh RB, Richards FF, Aksoy S (1993) Genetic transformation and phylogeny of bacterial symbionts from tsetse. Insect Mol Biol 1:123–131PubMedCrossRefGoogle Scholar
  3. 3.
    Bergan T, Grimont PAD, Grimont F (1983) Fatty acids of Serratia determined by gas chromatography. Curr Microbiol 8:7–11CrossRefGoogle Scholar
  4. 4.
    Bhaskar B, Roy P, Chakraborty R (2005). Serratia ureilytica sp. nov., a novel urea-utilizing species. Int J Syst Evol Microbiol 55:2155–2158CrossRefGoogle Scholar
  5. 5.
    Boe B, Gjerde J (1980) Fatty acid patterns in the classification of some representatives of the families Enterobacteriaceae and Vibrionaceae. J Gen Microbiol 116:41–49PubMedGoogle Scholar
  6. 6.
    Brambilla E, Päuker O, Cousin S, Steiner U, Reimer A, Stackebrandt E (2007) High phylogenetic diversity of Flavobacterium spp. isolated from a hardwater creek, Harz Mountains, Germany. Org Div Evol 7:145–154CrossRefGoogle Scholar
  7. 7.
    Brenner D, Krieg NR, Staley JT, Garrity GM (2005) Bergey’s manual of systematic bacteriology, 2nd ed., vol. 2. The Proteobacteria, part B, the Gammaproteobacteria. Springer, New YorkGoogle Scholar
  8. 8.
    Brenner DJ, Farmer JJ III (2005) Family I. Enterobacteriaceae. In: Brenner D, Krieg NR, Staley JT, Garrrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd ed., vol. 2. The Proteobacteria, part B, the Gammaproteobacteria. Springer, New York, pp 587–607CrossRefGoogle Scholar
  9. 9.
    Chou JH, Chen WM, Arun AB, Young CC (2007) Trabulsiella odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus Shiraki. Int J Syst Evol Microbiol 57:696–700PubMedCrossRefGoogle Scholar
  10. 10.
    Cousin S, Päuker O, Stackebrandt E (2007) Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. Int J Syst Evol Microbiol 57:243–249PubMedCrossRefGoogle Scholar
  11. 11.
    Dale C, Maudlin I (1999) Sodalis gen. nov and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol 49:267–275PubMedGoogle Scholar
  12. 12.
    De Soete G (1983) A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626CrossRefGoogle Scholar
  13. 13.
    DSMZ catalogue of strains 7th ed (2001) Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, GermanyGoogle Scholar
  14. 14.
    Farmer JJ III (2005) Genus VI. Budvicia. In: Brenner D, Krieg NR, Staley JT, Garrrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd ed., vol. 2. The Proteobacteria, part B, The Gammaproteobacteria. Springer, New York, pp 639–641Google Scholar
  15. 15.
    Hauben L, Swings J (2005) Genus IV. Brenneria. In: Brenner D, Krieg NR, Staley JT, Garrrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd ed., vol. 2. The Proteobacteria, part B, the Gammaproteobacteria. Springer, New York, pp 628–633Google Scholar
  16. 16.
    Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol. 3. Academic Press, New York, pp 21–132Google Scholar
  17. 17.
    Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005CrossRefGoogle Scholar
  18. 18.
    Ludwig W, Strunk O, Westram R, Richter L et al (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  19. 19.
    Lünsdorf H, Strömpl C, Osborn AM, Bennasar A, Moore ERB, Abraham W-R, Timmis KN (2001) Approach to analyze interactions of microorganisms, hydrophobic substrates, and soil colloids leading to formation of composite biofilms, and to study initial events in microbiogeological processes. Meth Enzymol 336:317–331PubMedCrossRefGoogle Scholar
  20. 20.
    Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167Google Scholar
  21. 21.
    Muurholm S, Cousin S, Päuker O, Brambilla E, Stackebrandt E (2007) Pedobacter duraquae sp. nov., Pedobacter westerhofensis sp. nov., Pedobacter metabolipauper sp. nov., Pedobacter hartonius sp. nov. and Pedobacter steynii sp. nov., isolated from a hardwater rivulet. Int J Syst Evol Microbiol 57:2221–2227PubMedCrossRefGoogle Scholar
  22. 22.
    NCCLS (2000) Performance standards for antimicrobial disk susceptibility tests. 7th ed. Approved standard M2-A7. Wayne, PA: NCCLSGoogle Scholar
  23. 23.
    O’Hara CM, Farmer JJ III (2005) Genus XIV Ewingella. In: Brenner D, Krieg NR, Staley JT, Garrrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd ed., vol. 2, the Proteobacteria, part B, the Gammaproteobacteria. Springer, New York, pp 679–681Google Scholar
  24. 24.
    Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212PubMedCrossRefGoogle Scholar
  25. 25.
    Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  26. 26.
    Schindler J (2005) Genus XXVIII Pragia. In: Brenner D, Krieg NR, Staley JT, Garrrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd ed., vol. 2, the Proteobacteria, part B, the Gammaproteobacteria. Springer, New York, pp 744–745Google Scholar
  27. 27.
    Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  28. 28.
    Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43PubMedCrossRefGoogle Scholar
  29. 29.
    Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  30. 30.
    Stackebrandt E, Lang E, Cousin S, Päuker O, Brambilla E, Kroppenstedt R, Lünsdorf H (2007) Deefgea rivuli gen. nov., sp. nov., a member of the class Betaproteobacteria. Int J Syst Evol Microbiol 57:639–645PubMedCrossRefGoogle Scholar
  31. 31.
    Tindall BJ (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130Google Scholar
  32. 32.
    Tindall BJ (1996) Respiratory lipoquinones as biomarkers. In: Akkermans A, de Bruijn F, van Elsas D (eds) Molecular microbial ecology manual, section 4.1.5, supplement 1. Dordrecht: KluwerGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Susanne Verbarg
    • 1
  • Anja Frühling
    • 1
  • Sylvie Cousin
    • 1
  • Evelyne Brambilla
    • 1
  • Sabine Gronow
    • 1
  • Heinrich Lünsdorf
    • 2
  • Erko Stackebrandt
    • 1
  1. 1.DSMZ-German Collection of Microorganisms and Cell Cultures GmbHBraunschweigGermany
  2. 2.Helmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations