Current Microbiology

, Volume 56, Issue 3, pp 261–267 | Cite as

Characterization of Two 2[4Fe4S] Ferredoxins from Clostridium acetobutylicum

  • Olivier Guerrini
  • Bénédicte Burlat
  • Christophe Léger
  • Bruno Guigliarelli
  • Philippe Soucaille
  • Laurence Girbal
Article

Abstract

In vivo hydrogen production in Clostridium acetobutylicum involves electron transfer between ferredoxin and [FeFe]-hydrogenase. Five C. acetobutylicum open reading frames were annotated as coding for putative ferredoxins. We focused our biophysical and biochemical investigations on CAC0303 and CAC3527, which possess the sequence signature and length of classical 2[4Fe4S] clostridial ferredoxins but differ significantly in theoretical pI. After cloning, heterologous expression in E. coli followed by in vitro Fe-S incorporation and purification, CAC0303 was shown to have a regular electron paramagnetic resonance (EPR) signal for a classical 2[4Fe4S] clostridial ferredoxin, while CAC3527 displayed an unusual EPR signal and a quite low reduction potential. Both ferredoxins were reduced in vitro by C. acetobutylicum [FeFe]-hydrogenase, but the CAC3527 reduction rate was 10-fold lower than that of CAC0303. These results are consistent with the efficiency of intermolecular electron transfer being dictated by the redox thermodynamics, the contribution of the ferredoxin global charge being only minor. The physiological function of CAC3527 is discussed.

References

  1. 1.
    Armstrong FA, Camba R, Heering HA, et al. (2001) Fast voltammetric studies of the kinetics and energetics of coupled electron-transfer reactions in proteins. Faraday Disc 116:191–204CrossRefGoogle Scholar
  2. 2.
    Asso M, Mbarki O, Guigliarelli B, et al. (1995) EPR and redox characterization of ferredoxins I and II from Desulfovibrio vulgaris Miyazaki. Biochem Biophys Res Commun 211:198–204PubMedCrossRefGoogle Scholar
  3. 3.
    Bradford MM (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  4. 4.
    Chen JS, Blanchard DK (1979) A simple hydrogenase-linked assay for ferredoxin and flavodoxin. Anal Biochem 93:216–222PubMedCrossRefGoogle Scholar
  5. 5.
    Demuez M, Cournac L, Guerrini O, Soucaille P, Girbal L (2007) Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners. FEMS Microbiol Lett 275:113–121PubMedCrossRefGoogle Scholar
  6. 6.
    Duff JLC, Breton JLJ, Butt JN, et al. (1996) Novel redox chemistry of [3Fe-4S] clusters: electrochemical characterization of the all-Fe(II) form of the [3Fe-4S] cluster generated reversibly in various proteins and its spectroscopic investigation in Sulfolobus acidocaldarius ferredoxin. J Am Chem Soc 118:8593–8603 CrossRefGoogle Scholar
  7. 7.
    Feinberg BA, Lo X, Iwamoto T, et al. (1997) Synthetic mutants of Clostridium pasteurianum ferredoxin: open iron sites and testing carboxylate coordination. Protein Eng 10:69–75PubMedCrossRefGoogle Scholar
  8. 8.
    Girbal L, Von Abendroth G, Winkler M, et al. (2005) Homologous/heterologous over–expression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe–only hydrogenases with high specific activity. Appl Environ Microbiol 71:2777–2781PubMedCrossRefGoogle Scholar
  9. 9.
    King PW, Posewitz MC, Ghirardi ML, et al. (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163–2172PubMedCrossRefGoogle Scholar
  10. 10.
    Kutty R, Bennett GN (2007) Characterization of a novel ferredoxin with N-terminal extension from Clostridium acetobutylicum ATCC 824. Arch Microbiol 187:161–169PubMedCrossRefGoogle Scholar
  11. 11.
    Kyritsis P, Hatzfeld OM, Link TA, et al. (1998) The two [4Fe-4S] clusters in Chromatium vinosum ferredoxin have largely different reduction potentials. J Biol Chem 273:15404–15411PubMedCrossRefGoogle Scholar
  12. 12.
    Kyristsis P, Kümmerle R, Gaspard Huber J, et al. (1999) Unusual NMR, EPR, and Mossbauer properties of Chromatium vinosum 2[4Fe-4S] ferredoxin. Biochemistry 38:6335–6345CrossRefGoogle Scholar
  13. 13.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Electroanal J Chem 101:19–28CrossRefGoogle Scholar
  14. 14.
    Léger C, Dementin S, Bertrand P, et al. (2004) Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans NiFe hydrogenase studied by protein film voltammetry. J Am Chem Soc 126:12162–12172PubMedCrossRefGoogle Scholar
  15. 15.
    More C, Camensuli P, Dole F, et al. (1996) A new approach for the structural study of metalloproteins: the quantitative analysis of intercenter magnetic interactions. J Biol Inorg Chem 2:152–161Google Scholar
  16. 16.
    Moulis JM, Davasse V (1995) Probing the role of electrostatic forces in the interaction of Clostridium pasteurianum ferredoxin with its redox partners. Biochemistry 34:16781–16788PubMedCrossRefGoogle Scholar
  17. 17.
    Moulis JM, Meyer J (1982) Characterization of the selenium substituted 2[4Fe-4Se] ferredoxin from Clostridium pasteurianum. Biochemistry 21:4762–4771PubMedCrossRefGoogle Scholar
  18. 18.
    Nölling J, Breton G, Omelchenko MV, et al. (2001) Genome sequence and comparative analysis of the solvent producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838PubMedCrossRefGoogle Scholar
  19. 19.
    Quinkal I, Davasse V, Gaillard J, et al. (1994) On the role of conserved proline residues in the structure and function of Clostridium pasteurianum 2[4Fe-4S] ferredoxin. Protein Eng 7:681–687PubMedCrossRefGoogle Scholar
  20. 20.
    Soni BK, Soucaille P, Goma G (1987) Continuous acetone butanol fermentation: influence of vitamins on the metabolic activity of Clostridium acetobutylicum. Appl Microbiol Biotechnol 2:1–5Google Scholar
  21. 21.
    Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176:1443–1450PubMedGoogle Scholar
  22. 22.
    Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Olivier Guerrini
    • 1
  • Bénédicte Burlat
    • 2
  • Christophe Léger
    • 2
  • Bruno Guigliarelli
    • 2
  • Philippe Soucaille
    • 1
    • 4
  • Laurence Girbal
    • 1
    • 3
  1. 1.UMR5504, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, CNRS, INRA, INSAToulouseFrance
  2. 2.Laboratoire de Bioénergétique et Ingénierie des protéines, UPR 9036CNRS and Aix-Marseille UniversityMarseille CedexFrance
  3. 3.Laboratoire d’Ingénierie des Systèmes Biologiques et des ProcédésToulouse cedex 4France
  4. 4.Metabolic Explorer, Bio pôle Clermont LimagneSaint-BeauzireFrance

Personalised recommendations