Current Microbiology

, 55:128 | Cite as

Disruption of the Fatty Acid Δ6-Desaturase Gene in the Oil-Producing Fungus Mortierella isabellina by Homologous Recombination

  • Xuewei Zhang
  • Mingchun Li
  • Dongsheng Wei
  • Xiaomei Wang
  • Xue Chen
  • Laijun Xing
Article

Abstract

The γ-linolenic acid-producing fungus Mortierella isabellina 6-22 is an important industrial strain. To clarify the biosynthetic pathways for polyunsaturated fatty acids in this strain, a disruption vector pD4MI6, including 5′ and 3′ regions of the fatty acid Δ6-desaturase open reading frame as homologous recombination elements and the Escherichia coli hygromycin B (HmB) phosphotransferase gene (hph) as selectable marker, was successfully constructed. Following transformation of pD4MI6 into the hygromycin B-sensitive recipient strain M. isabellina 6-22-4, a Δ6-desaturase gene-defective mutant strain was selected that was unable to produce γ-linolenic acid as determined by gas chromatography and molecular analysis. The morphology and physiology of the mutant, such as colony shape, color, and growth rate, were changed dramatically compared with that of strain M. isabellina 6-22-4.

Notes

Acknowledgment

We are grateful to Dr. D.A. MacKenzie, Institute of Food Research, Norwich, UK, for supplying the pD4 plasmid and for help in editing the manuscript.

Literature Cited

  1. 1.
    Armaleo D, Ye GN, Klein TM, Shark KB, Sanford JC, Johnston SA (1990) Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr Genet 17:97–103PubMedCrossRefGoogle Scholar
  2. 2.
    Bergès T, Barreau C (1991) Isolation of uridine auxotrophs from Trichoderma reesei and efficient transformation with the cloned ura3 and ura5 genes. Curr Genet 19:359–365PubMedCrossRefGoogle Scholar
  3. 3.
    Bernard HU, Krammer G, Rowekamp WG (1985) Construction of a fusion gene that confers resistance against hygromycin B to mammalian cells in culture. Exp Cell Res 158:237–243PubMedCrossRefGoogle Scholar
  4. 4.
    Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA (1987) DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO J 6:835–840PubMedGoogle Scholar
  5. 5.
    Chakraboty BN, Patterson NA, Kapoor M (1991) An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol 37:858–863CrossRefGoogle Scholar
  6. 6.
    Challen MP, Rao BG, Elliott TJ (1991) Transformation strategies for Agaricus. Pages 129–134 in LJLD Van Griensven (ed) Genetics and breeding of Agaricus. Pudoc, WageningenGoogle Scholar
  7. 7.
    Clancy S, Mann C, Davis RW, Calos MP (1984) Deletion of plasmid sequences during Saccharomyces transformation. J Bacteriol 159:1065–1067PubMedGoogle Scholar
  8. 8.
    Gomi K, Iimura Y, Hara S (1987) Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agric Biol Chem 51:2549–2555Google Scholar
  9. 9.
    Gritz L, Davies J (1983) Plasmid encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25:179–188PubMedCrossRefGoogle Scholar
  10. 10.
    Horrobin DF (1992) Nutritional and medical importance of γ-linolenic acid. Prog Lipid Res 31:163–194PubMedCrossRefGoogle Scholar
  11. 11.
    Iqbal G, Rao V (1997) Polyunsaturated fatty acids, part1: occurrence,biological activities and applications. Tibtech 15:401–409CrossRefGoogle Scholar
  12. 12.
    Kaster KR, Burgett SG, Rao RN, Ingolia TD (1983) Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing. Nucleic Acids Res 11:6895–6911PubMedCrossRefGoogle Scholar
  13. 13.
    Kaster KR, Burgett SG, Ingolia TD (1984) Hygromycin B resistance as dominant selectable marker in yeast. Curr Genet 8:353–358CrossRefGoogle Scholar
  14. 14.
    Xing LJ, Zhong H, Zhou H, Li MC, Zhang BW, Lu FZ (1996) Study on the fermentation production of γ-linolenic acid by M. isabellina. Acta Mycol Sin 11:6895–6911Google Scholar
  15. 15.
    Liu L, Li MC, Hu GW, Zhang L, Xing LJ (2001) Identification of M. isabellina 6-22 Δ6- fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Acta Microbiol Sin 41:397–401Google Scholar
  16. 16.
    Lorito M, Hayes CK, Di Pietro A, Harman GE (1993) Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr Genet 24:349–356PubMedCrossRefGoogle Scholar
  17. 17.
    MacKenzie DA, Wongwathanarat P, Carter AT, Archer DB (2000) Isolation and use of a homologous histone H4 promoter and a ribosomal DNA region in a transformation vector for the oil-producing fungus Mortierella alpina. Appl Environ Microb 66:4655–4661CrossRefGoogle Scholar
  18. 18.
    Marmeisse R, Gay G, Debaud JC, Casselton LA (1992) Genetic transformation of the symbiotic basidomycete fungus Hebeloma cylindrosporum. Curr Genet 22:41–45PubMedCrossRefGoogle Scholar
  19. 19.
    Li MC, Liu L, Hu GW, Xing LJ (2003) Expression of M. isabellina Δ6- fatty acid desaturase gene in γ-linolenic acid production in transgenic tobacco. Chin J Biotechnol 19:178–184Google Scholar
  20. 20.
    Li MC, Liu L, Zhang L, Hu GW, Xing LJ (2001) Cloning and sequencing analysis of Δ6- fatty acid desaturase gene from M. isabellina. Mycosystema 20(1):44–50Google Scholar
  21. 21.
    Li MC, Xing LJ (1997) Protoplast formation and regeneration of γ-linolenic acid producing strains of Mortierella isabellina. Mycosystema 16(1):24–29Google Scholar
  22. 22.
    Certik M, Sakuradani E, Shimizu S (1998) Desaturase-defective fungal mutants: useful tools for the regulation and overproduction of polyunsaturated fatty acids. Trends Biotechnol 16:500–505CrossRefGoogle Scholar
  23. 23.
    Muphy DJ, Piffaneth P (1998) Fatty acid desaturase:structure mechanism and regulation. In: Harwood JL (ed) Plant lipid biosynthesis-fundamentals and agricultural applications. Cambridge University Press, pp 95–130Google Scholar
  24. 24.
    Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Annu Rev Biochem 55:69–102PubMedCrossRefGoogle Scholar
  25. 25.
    Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from E. coli. Gene 56:117–124PubMedCrossRefGoogle Scholar
  26. 26.
    Queener SW, Ingolia TD, Skatrud PL, Chapman JL, Kaster KR (1985) A system for genetic transformation of Cephalosporium acremonium. In Schlessinger D (ed). Microbiology. American Society of Microbiologists, Washington, DC Pages 268–472Google Scholar
  27. 27.
    Ruiz-Díez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195PubMedCrossRefGoogle Scholar
  28. 28.
    Schuren FH, Wessels JG (1994) Highly-efficient transformation of the homobasidiomycete Schizophyllum commune to phleomycin resistance. Curr Genet 26:179–183PubMedCrossRefGoogle Scholar
  29. 29.
    Smith WL, Borgeat P (1985) The eicosanoids: prostaglandins, thromboxanes, leukotrienes, and hydroxyl-eicosaenoic acids. In Vance DE, Vance JE (eds) Biochemistry of liquds and membranes. Menlo Park, CA: Benjamin/Cummings, pp 325–360Google Scholar
  30. 30.
    Takeno S, Sakuradani E, Murata S, et al. (2004) Establishment of an overall transformation system for an oil-producing filamentous fungus, Mortierella alpina 1S-4. Appl Microbiol Biol 65:419–425CrossRefGoogle Scholar
  31. 31.
    Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Shimizu S (2005) Transformation of oil-producing fungus, Mortierella alpina 1S-4,using zeocin, and application to arachidonic acid production. J Biosci Bioeng 100:617–622PubMedCrossRefGoogle Scholar
  32. 32.
    Van den Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) A chimaeric hygromycin resistance gene as a selectable marker in plant cell. Plant Mol Biol 5:299–302CrossRefGoogle Scholar
  33. 33.
    Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK (1985) Resistance to hygromycin B. A new marker for plant transformation studies. Plant Mol Biol 5:103–108CrossRefGoogle Scholar
  34. 34.
    Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 81:1470–1474PubMedCrossRefGoogle Scholar
  35. 35.
    Yoder OC, Weltring K, Turgeon BG, Garber RC, van Etten HD (1986) Technology for molecular cloning of fungal virulence genes. In: Bailey JA (ed) Biology and molecular biology of plant–pathogen interactions. NATO ASI Series H. Cell Biology, Vol. 1. Berlin (Germany, F.R.), Springer, pp 371–384Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xuewei Zhang
    • 1
    • 2
  • Mingchun Li
    • 1
    • 2
  • Dongsheng Wei
    • 1
    • 2
  • Xiaomei Wang
    • 1
    • 2
  • Xue Chen
    • 1
    • 2
  • Laijun Xing
    • 1
    • 2
  1. 1.College of Life Science, Nankai UniversityTianjinPeople’s Republic of China
  2. 2.Tianjin Key Laboratory of Microbial Functional Genomics, Nankai UniversityTianjinPeople’s Republic of China

Personalised recommendations