Current Microbiology

, Volume 55, Issue 3, pp 193–197 | Cite as

Absence of Wolbachia in Nonfilariid Worms Parasitizing Arthropods

  • Olivier DuronEmail author
  • Laurent Gavotte


Wolbachia are strictly intracellular maternally inherited α-proteobacteria, largely widespread among arthropods and filariids (i.e., filarial nematodes). Wolbachia capacities to infect new host species have been greatly evidenced and the transfer of Wolbachia between arthropods and filariids has probably occurred more than once. Interestingly, among nematode species, Wolbachia infection was found in filariids but not in closely related lineages. Their occurrence in filariids has been supposed a consequence of the parasitic lifestyle of worms within Wolbachia-infected arthropods, implying that nonfilariid worms parasitizing arthropods are also likely to be infected by some Wolbachia acquired from their hosts. To further investigate this hypothesis, we have examined seven species of nonfilariid worms of Nematoda and Nematomorpha phyla, all interacting intimately with arthropods. Wolbachia infection in nonfilariid parasitic worms was never detected by polymerase chain reaction assays of the 16S rDNA and wsp genes. By contrast, some arthropod hosts are well infected by Wolbachia of the B supergroup. Then the intimate contact with infected arthropods is not a sufficient condition to explain the Wolbachia occurrence in filariids and could underline a physiological singularity or a particular evolutionary event to acquire and maintain Wolbachia infection.


Wolbachia Symbiosis Nematoda Nematomorpha 



We are very grateful to S. Morand, O. Thaller, and F. Thomas for providing the worm samples and discussion. We are also grateful to Kate Hutchence for her critical review of this manuscript. 2007-072 of the Institut des Sciences de l’Evolution de Montpellier (UMR CNRS 5554).


  1. 1.
    Stevens L, Giordano R, Fialho RF (2001) Male-killing, nematode infections, bacteriophage infection, and virulence of cytoplasmic bacteria the genus Wolbachia. Annu Rev Ecol Syst 32:519–545CrossRefGoogle Scholar
  2. 2.
    Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102PubMedCrossRefGoogle Scholar
  3. 3.
    Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609PubMedCrossRefGoogle Scholar
  4. 4.
    Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9:393–405PubMedCrossRefGoogle Scholar
  5. 5.
    Werren JH, Windsor D, Guo L (1995) Distribution of Wolbachia among neotropical arthropods. Proc R Soci London B 262:197–204CrossRefGoogle Scholar
  6. 6.
    Bandi C, McCall JW, Genchi C, Corona S, Venco L, Sacchi L (1999) Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int J Parasitol 29:357–364PubMedCrossRefGoogle Scholar
  7. 7.
    Bandi C, Dunn AM, Hurst GDD, Rigaud T (2001) Inherited microorganisms, sex-specific virulence and reproductive parasitism. Trends Parasitol 17:88–94PubMedCrossRefGoogle Scholar
  8. 8.
    Hoerauf A, Nissen-Pahle K, Schmetz C, Henkle-Duhrsen K, Blaxter ML, Buttner DW, Gallin MY, Al-Qaoud KM, Lucius R, Fleischer B (1999) Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. J Clin Invest 103:11–17PubMedGoogle Scholar
  9. 9.
    Bandi C, Anderson TJ, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc R Soc London B 265:2407–2413CrossRefGoogle Scholar
  10. 10.
    Chirgwin SR, Porthouse KH, Nowling JM, Klei TR (2002) The filarial endosymbiont Wolbachia sp. is absent from Setaria equina. J Parasitol 88:1248–1250PubMedGoogle Scholar
  11. 11.
    Plenge-Bonig A, Kromer M, Buttner DW (1995) Light and electron microscopy studies on Onchocerca jakutensis and O. flexuosa of red deer show different host-parasite interactions. Parasitol Res 81:66–73PubMedCrossRefGoogle Scholar
  12. 12.
    Bordenstein SR, Rosengaus RB (2005) Discovery of a novel Wolbachia supergroup in Isoptera. Curr Microbiol 51:393–398PubMedCrossRefGoogle Scholar
  13. 13.
    Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C (2002) How many Wolbachia supergroups exist? Mol Biol Evolut 19:341–346Google Scholar
  14. 14.
    Rowley SM, Raven RJ, McGraw EA (2004) Wolbachia pipientis in Australian spiders. Curr Microbiol 49:208–214PubMedCrossRefGoogle Scholar
  15. 15.
    Panaram K, Marshall JL (2006) F supergroup Wolbachia in bush crickets: what do patterns of sequence variation reveal about this supergroup and horizontal transfer between nematodes and arthropods? Genetica 130:53–60PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou WG, Rousset F, O’Neill S. (1998) Phylogeny and PCR based classification of Wolbachia strains using wsp gene sequences. Proc R Soc London B 265:509–515CrossRefGoogle Scholar
  17. 17.
    Casiraghi M, Anderson TJC, Bandi C, Bazzocchi C, Genchi C (2001) A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122:93–103PubMedCrossRefGoogle Scholar
  18. 18.
    Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T, Wernegreen JJ, Werren JH, Bandi C (2005) Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 151:4015–4022PubMedCrossRefGoogle Scholar
  19. 19.
    Bordenstein SR, Fitch DHA, Werren JH (2003) Absence of Wolbachia in nonfilariid nematodes. J Nematol 35:266–270PubMedGoogle Scholar
  20. 20.
    Pettersen JJ (1985) Nematodes as biological control agents: Part I. Mermithidae. Adv Parasitol 24:307–344CrossRefGoogle Scholar
  21. 21.
    Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorrhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72PubMedCrossRefGoogle Scholar
  22. 22.
    Schmidt-Rhaesa A (2001) The life cycle of horsehair worms (Nematomorpha). Acta Parasitol 46:151–158Google Scholar
  23. 23.
    Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, Vol. A6. Kluwer Academic, Boston, pp 1–10Google Scholar
  24. 24.
    Bazzocchi C, Jamnongluk W, O’Neill SL, Anderson TJC, Genchi C, Bandi C (2000) wsp gene sequences from the Wolbachia of filarial nematodes. Curr Microbiol 41:96–100PubMedCrossRefGoogle Scholar
  25. 25.
    Giribet S, Carranza S, Bagui J, Riutort M, Ribera C (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol Biol Evolut 13:76–84Google Scholar
  26. 26.
    Heath BD, Butcher RDJ, Whitfield WGF, Hubbard SF (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol 9:313–316PubMedCrossRefGoogle Scholar
  27. 27.
    Mitsuhashi W, Saiki T, Wei W, Kawakita H, Sato M (2002) Two novel strains of Wolbachia coexisting in both species of mulberry leafhoppers. Insect Mol Biol 11:577–584PubMedCrossRefGoogle Scholar
  28. 28.
    Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P (2006) Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microbial Ecol 51:294–301CrossRefGoogle Scholar
  29. 29.
    Vavre F, Fleury F, Lepetit D, Fouillet P, Bouletreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evolut 16:1711–1723Google Scholar
  30. 30.
    Noda H, Miyoshi T, Zhang Q, Watanabe K, Deng K, Hoshizaki S (2001) Wolbachia infection shared among planthoppers (Homoptera: Delphacidae) and their endoparasite (Strepsiptera: Elenchidae): a probable case of interspecies transmission. Mol Ecol 10:2101–2106PubMedCrossRefGoogle Scholar
  31. 31.
    Fenn K, Blaxter M (2006) Wolbachia genomes: revealing the biology of parasitism and mutualism. Trends Parasitol 22:60–65PubMedCrossRefGoogle Scholar
  32. 32.
    Hartmann N, Stuckas H, Lucius R, Bleiss W, Theuring F, Kalinna BH (2003) Trans-species transfer of Wolbachia: microinjection of Wolbachia from Litomosoides sigmodontis into Acanthocheilonema viteae. Parasitology 126:503–511PubMedGoogle Scholar
  33. 33.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  34. 34.
    Poinar G Jr, Buckley R (2006) Nematode (Nematoda: Mermithidae) and hairworm (Nematomorpha: Chordodidae) parasites in Early Cretaceous amber. J Invertebr Pathol 93:36–41PubMedCrossRefGoogle Scholar
  35. 35.
    Bleidorn C, Schmidt-Rhaesa A, Garey JR (2002) Systematic relationships of Nematomorpha based on molecular and morphological data. Invertebr Biol 121:357–364CrossRefGoogle Scholar
  36. 36.
    Bain O (1981) Filariids and their evolution. Parasitology 82:167–168Google Scholar
  37. 37.
    Thomas F, Schmidt-Rhaesa A, Martin G, Manu C, Durand P, Renaud F (2002) Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts? J Evolut Biol 15:356–361CrossRefGoogle Scholar
  38. 38.
    Kumar S, Tamura K, Nei M (2003) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Equipe Génétique de l’AdaptationInstitut des Sciences de l’Evolution, Université de Montpellier II, C.C. 065MontpellierFrance
  2. 2.Department of BiologyUniversity College LondonLondonUK
  3. 3.Department of EntomologyUniversity of KentuckyLexingtonUSA

Personalised recommendations