Advertisement

Current Microbiology

, Volume 54, Issue 5, pp 361–365 | Cite as

Production and Regulation of Lipase Activity from Penicillium restrictum in Submerged and Solid-State Fermentations

  • Luciana A. I. de Azeredo
  • Patrícia M. Gomes
  • Geraldo L. Sant’AnnaJr.
  • Leda R. Castilho
  • Denise M. G. FreireEmail author
Article

Abstract

Different carbon (C) sources, mainly carbohydrates and lipids, have been screened for their capacity to support growth and lipase production by Penicillium restrictum in submerged fermentation (SmF) and in solid-state fermentation (SSF). Completely different physiological behaviors were observed after the addition of easily (oleic acid and glucose) and complex (olive oil and starch) assimilable C sources to the liquid and solid media. Maximal lipolytic activities (12.1 U/mL and 17.4 U/g) by P. restrictum were obtained with olive oil in SmF and in SSF, respectively. Biomass levels in SmF (12.2–14.1 mg/mL) and SSF (7.0–8.0 mg/g) did not varied greatly with the distinct C sources used. High lipase production (12.3 U/g) using glucose was only attained in SSF, perhaps due to the ability of this fermentation process to minimize catabolite repression.

Keywords

Lipase Oleic Acid Lipase Activity Lipolytic Activity Lipase Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors acknowledge the financial support from FAPERJ, CNPq/PROFIX, CNPq/Universal.

Literature Cited

  1. 1.
    Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Proc Biochem 36:565–570CrossRefGoogle Scholar
  2. 2.
    Aidoo KE, Hendry R, Wood BJB (1981) Estimation of fungal growth in a solid state fermentation system. Appl Microbiol Biotechnol 12:6–9CrossRefGoogle Scholar
  3. 3.
    Akhtar MW, Mirza AQ, Na wazish MN, Chughtai MID (1983) Effect of triglycerides on the production of lipids and lipase by Mucor hiemalis. Can J Microbiol 29:664–669PubMedCrossRefGoogle Scholar
  4. 4.
    Aranda C, Robledo A, Loera O, Contreras-Esquivel JC, Rodríguez R, Aguila CN (2006) Fungal invertase expression in solid-state fermentation. Food Technol Biotechnol 44:229–233Google Scholar
  5. 5.
    Asther M, Haon M, Roussos S, et al. (2002) Feruloyl esterase from Aspergillus niger a comparison of the production in solid state and submerged fermentation. Proc Biochem 38:685–691CrossRefGoogle Scholar
  6. 6.
    Bornscheuer UT, Bessler C, Srinivas R, Krishna SH (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437PubMedCrossRefGoogle Scholar
  7. 7.
    Cerda-Montalvo ML, Contreras-Esquivel JC, Rodriguez- -Herrera R, Aguilar CN (2005) Glucose diffusion on support for solid-state fermentation and its influence on tannase production profiles. Int J Chem Reactor Eng 3:1–10CrossRefGoogle Scholar
  8. 8.
    Feniksova RV, Tikhomrova AS, Rakhleeva BE (1960) Conditions for forming amylase and proteinase in surface culture of Bacillus subtilis. Mikrobiologica 29:745–748Google Scholar
  9. 9.
    Ferrer P, Montesinos JL, Valero F, Solá C (2001) Production of native and recombinant lipases by Candida rugosa. A review. Appl Biochem Biotechnol 95:221–-235PubMedCrossRefGoogle Scholar
  10. 10.
    Freire DMG, Teles EF, Bon EPS, Sant’Anna GL Jr (1997) Lipase production by Penicillium restrictum in a bench-scale fermentor. Effect of carbon, nitrogen nutrition,agitation and aeration. Appl Biochem Biotechnol 63:409–421PubMedGoogle Scholar
  11. 11.
    Freire DMG, Gomes PM, Bon EPS, Sant’Anna GL Jr (1997) Lipase production by a new promising strain of Penicillium restrictum. J Braz Soc Microbiol 28:6–12Google Scholar
  12. 12.
    Gombert AK, Pinto AL, Castilho LR, Freire DMG (1999) Lipase production in solid-state fermentation using babassu cake as substrate. Proc Biochem 35:85–90CrossRefGoogle Scholar
  13. 13.
    Helistö P, Korpela T (1998) Effects of detergents on activity of microbial lipases as measured by the nitrophenyl alkanoate esters method. Enzyme Microbiol Technol 23:113–117CrossRefGoogle Scholar
  14. 14.
    Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools in biotechnology. Trends Biotechnol 16:396–403PubMedCrossRefGoogle Scholar
  15. 15.
    Maldonado MC, Strasser de Saad AM (1998) Production of pectinesterase and polygalactruronase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol 20:34–38PubMedCrossRefGoogle Scholar
  16. 16.
    Mitchell DA, Berovic M, Krieger N (2002) Overview of solid state bioprocessing. Biotechnol Annu Rev 8:183–225PubMedCrossRefGoogle Scholar
  17. 17.
    Nahas E (1988) Control of lipase production by Rhizopus Oligosporus under various growth conditions J Gen Microbiol 134:227–233Google Scholar
  18. 18.
    Nandakumar MP, Thakur MS, Raghavarao KSMS, Ghildyal NP (1999) Studies on catabolite repression in solid state fermentation for biosynthesis of fungal amylases. Lett Appl Microbiol 29:380–384CrossRefGoogle Scholar
  19. 19.
    Y, Miyairi S, Yamada K (1968) Sterol requirements for the lipase production by Candida cylindracea. Agric Biol Chem 32:1476–1478Google Scholar
  20. 20.
    MB, Pinto AL, Gombert AK, et al. (2000) Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate. Appl Biochem Biotechnol 84:1137–1145PubMedCrossRefGoogle Scholar
  21. 21.
    Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131PubMedGoogle Scholar
  22. 22.
    Pandey A, Selvakumar P, Soccol CR, Nigam P (1999b) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77:149–162Google Scholar
  23. 23.
    Papagianni M, Nokes SE, Filer K (1999) Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Proc Biochem 35:397–402CrossRefGoogle Scholar
  24. 24.
    Papagianni M, Nokes SE, Filer K (2001) Submerged and solid-state phytase fermentation by Aspergillus niger: effects of agitation and medium viscosity on phytase production, fungal morphology and inoculum performance. Food Technol Biotechnol 39:319–326Google Scholar
  25. 25.
    Pérez-Guerra N, Torrado-Agrasar A, López-Macias C, Pastrana L (2003) Main characteristics and applications of solid substrate fermentation. Electron J Environ Agric Food Chem 2:343–350Google Scholar
  26. 26.
    Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135CrossRefGoogle Scholar
  27. 27.
    Ramesh MV, Lonsane BK (1991) Ability of a solid-state fermentation fermentation technique to significantly minimize catabolic repression of a α-amylase production by Bacillus licheniformes M 27. Appl Microbiol Biotechnol 35:591–593CrossRefGoogle Scholar
  28. 28.
    Rogalska E, Douchert I, Verger R (1997) Microbial lipases: structures, function and industrial applications. Biochem Soc Trans 25:161–164PubMedGoogle Scholar
  29. 29.
    Sakurai Y, Lee TH, Shiota H (1977) On the convenient method for glucosamine estimation in koji. Agric Biol Chem 41:619–24Google Scholar
  30. 30.
    Solis-Pereyra S, Favela-Torres E, Gutierrez-Rojas M, et al. (1996) Production of pectinases by Aspergillus niger in solid state fermentation at high initial glucose concentration. Word J Microbiol Biotechnol 12:257–260CrossRefGoogle Scholar
  31. 31.
    Sztajer H, Maliszewska I (1989) The effects of culture conditions on. lipolytic productivity of Penicillium citrinum. Biotechnol Lett 11:895–898CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Luciana A. I. de Azeredo
    • 1
  • Patrícia M. Gomes
    • 2
  • Geraldo L. Sant’AnnaJr.
    • 2
  • Leda R. Castilho
    • 2
  • Denise M. G. Freire
    • 1
    Email author
  1. 1.Biochemistry Department, Institute of ChemistryFederal University of Rio de Janeiro, Centro de TecnologiaRio de JaneiroBrazil
  2. 2.Chemical Engineering Program/COPPEFederal University of Rio de Janeiro, Centro de TecnologiaRio de JaneiroBrazil

Personalised recommendations