Current Microbiology

, Volume 54, Issue 5, pp 335–341 | Cite as

Prevalence of Community-Occurring Extended Spectrum β-Lactamase-Producing Enterobacteriaceae in Brazil

  • Luciene A. R. Minarini
  • Ana C. Gales
  • Izabel C. V. Palazzo
  • Ana Lúcia C. Darini
Article

Abstract

The occurrence of extended-spectrum-β-lactamase (ESBL)-producing strains in the community was investigated in a private laboratory located in Juiz de Fora, Brazil. All enterobacterial isolates analysed were collected from urine of human patients between the years 2000 and 2002. ESBL production was confirmed by double disk screening, combination disk method, and Etest ESBL strip. The isoelectric point of each β-lactamase was determined in the crude extracts from each isolate. Detection of ESBL genes was performed by polymerase chain reaction and the genetic relatedness of the isolates determined by pulsed-field gel electrophoresis (PFGE). Of the 1,481 isolates, 22 (12 Klebsiella pneumoniae, 7 Escherichia coli, 1 Providencia stuartii, 1 Citrobacter freundii, and 1 Serratia marcescens) were identified as ESBL producers. The frequency of ESBL producers in the community was 1.48%. TEM-type enzymes were identified in 95.4% of the isolates, followed by the SHV type. Seven strains produced CTX-M–type enzymes. This study showed that strains producing multiple β-lactamases are also present in community-acquired bacterial isolates. Multiple strains exhibiting identical PFGE genotypes were found in individual patients indicating a common source of acquisition.

Literature Cited

  1. 1.
    Abott SL (2003) Klebsiella, Enterobacter, Citrobacter, Serratia, Plesiomonas, and other Enterobacteriaceae. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (eds) Manual of clinical microbiology. American Society for Microbiology, Washington, DC, pp 684–700Google Scholar
  2. 2.
    Arpin C, Dubois V, Coulange L, Andre C, Fischer I, Noury P, et al. (2003) Extended-spectrum beta-lactamase-producing Enterobacteriaceae in community and private health care centers. Antimicrob Agents Chemother 47:3506–3514PubMedCrossRefGoogle Scholar
  3. 3.
    Ben-Ami R, Schwaber MJ, Navon-Venezia S, Schwartz D, Giladi M, Chmelnitsky I, et al. (2006) Influx of extended-spectrum beta-lactamase-producing Enterobacteriaceae into the hospital. Clin Infect Dis 42:925–934PubMedCrossRefGoogle Scholar
  4. 4.
    Bonnet R (2004) Growing group of extended-spectrum (-lactamases: The CTX-M enzymes. Antimicrob Agents Chemother 48:1–14PubMedCrossRefGoogle Scholar
  5. 5.
    Borer A, Gilad J, Menashe G, Peled N, Riesenberg K, Schleffer F (2002) Extended-spectrum beta-lactamase-producing Enterobacteriaceae strains in community-acquired bacteremia in Southern Israel. Intern Med J Exp Clin Research 8:44–47Google Scholar
  6. 6.
    Bradford PA, Cherubin CE, Idemyor V, Rasmussen BA, Bush K (1994) Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: Identification of the extended-spectrum TEM-12 and TEM-10 ceftazidime-hydrolyzing beta-lactamases in a single isolate. Antimicrob Agents Chemother 38:761–766PubMedGoogle Scholar
  7. 7.
    Brigante G, Luzzaro F, Perilli M, Lombardi G, Colì A, Rossolini GM, et al. (2005) Evolution of CTX-M-type β-lactamases in isolates of Escherichia coli infecting hospital and community patients. Intern J Antimicrob Agents 25:157–162CrossRefGoogle Scholar
  8. 8.
    Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for (-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233PubMedGoogle Scholar
  9. 9.
    Carter MW, Oakton KJ, Warner M, Livermore DM (2000) Detection of extended-spectrum (-lactamases in Klebsiella with the oxoid combination disk method. J Clin Microbiol 38:4228–4232PubMedGoogle Scholar
  10. 10.
    Clinical and Laboratory Standards Institute (2005) Performance standards for antimicrobial disk susceptibility tests, 8th ed. (document M2-A8, v. 23, n.1)Google Scholar
  11. 11.
    Coque TM, Oliver A, Pérez-Díaz JC, Baquero F, Cantón R (2002) Genes encoding TEM-4, SHV-2, and CTX-M-10 extended-spectrum ß-lactamases are carried by multiple Klebsiella pneumoniae clones in a single hospital (Madrid, 1989 to 2000). Antimicrob Agents Chemother 46:500–510PubMedCrossRefGoogle Scholar
  12. 12.
    Cormican MG, Marshall AS, Jones RN (1996) Detection of extended-spectrum beta-lactamase (ESBL)–producing strains by the Etest ESBL screen. J Clin Microbiol 34:1880–1884PubMedGoogle Scholar
  13. 13.
    Daza R, Gutiérrez J, Piédrola G (2001) Antibiotic susceptibility of bacterial strains isolated from patients with community-acquired urinary tract infections. Intern J Antimicrob Agents 18:211–215CrossRefGoogle Scholar
  14. 14.
    Emery CL, Weymouth LA (1997) Detection and clinical significance of extended-spectrum beta-lactamases in a tertiary-care medical center. J Clin Microbiol 35:2061–2067PubMedGoogle Scholar
  15. 15.
    Essack SY, Hall LM, Pillay DG, McFadyen ML, Livermore DM (2001) Complexity and diversity of Klebsiella pneumoniae strains with extended-spectrum beta-lactamases isolated in 1994 and 1996 at a teaching hospital in Durban, South Africa. Antimicrob Agents Chemother 45:88–95PubMedCrossRefGoogle Scholar
  16. 16.
    Feria C, Ferreira E, Correia JD, Gonçalves J, Canica M (2002). Patterns and mechanisms of resistance to beta-lactams and beta-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal. J Antimicrob Chemother 49:77–85PubMedCrossRefGoogle Scholar
  17. 17.
    Jacoby GA, Sutton L (1991) Properties of plasmids responsible for production of extended-spectrum beta-lactamases. Antimicrob Agents Chemother 35:164–169PubMedGoogle Scholar
  18. 18.
    Jarlier V, Nicolas M, Fournier G, Philippon A (1988) Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev Infect Dis 10:867–878PubMedGoogle Scholar
  19. 19.
    Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S (1983) Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11:315–317PubMedCrossRefGoogle Scholar
  20. 20.
    Matthew M, Harris AM, Marshall MJ, Ross GW (1975) The use of analytic isoelectric focusing for detection and identification of (-lactamases. J Gen Microbiol 88:169–17821Google Scholar
  21. 21.
    Mendes C, Kiffer C, Segura A, Ribeiro J, Turner P (2004) Klebsiella penumoniae with multiple antimicrobial resistance. Braz J Infect Dis 8:109–111PubMedCrossRefGoogle Scholar
  22. 22.
    Motta RN, Oliveira MM, Magalhães PSF, Dias AM, Aragão LP, Forti AC, et al. (2003) Plasmid-mediated extended-spectrum beta-lactamase-producing strains of Enterobacteriaceae isolated from diabetes foot infections in a Brazilian diabetic center. Braz J Infect Dis 7:129–134PubMedCrossRefGoogle Scholar
  23. 23.
    Oteo J, Navarro C, Cercenado E, Delgado-Iribarren A, Wilhelmi I, Orden B, et al. (2006) Spread of Escherichia coli strains with high-level cefotaxime and ceftazidime resistance between the community, long-term care facilities, and hospital institutions. J Clin Microbiol 44:2359–2366PubMedCrossRefGoogle Scholar
  24. 24.
    Philippon A, Arlet G, Lagrange PH (1994) Origin and impact of plasmid-mediated extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis 13:17–29CrossRefGoogle Scholar
  25. 25.
    Pitout JD, Hossain A, Hanson ND (2004) Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol 42:5715–5721PubMedCrossRefGoogle Scholar
  26. 26.
    Pitout JDD, Nordmann P, Laupland KB, Poirel L (2005) Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J Antimicrob Chemother 56:52–59PubMedCrossRefGoogle Scholar
  27. 27.
    Rodriguez-Bano J, Navarro MD, Romero L, Martinez-Martinez L, Muniain MA, Perea EJ, et al. (2004) Epidemiology and clinical of infectious caused by extended-spectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients. J Clin Microbiol 42:1089–1094PubMedCrossRefGoogle Scholar
  28. 28.
    Saladin M, Cao VT, Lambert T, Donay JL, Herrmann JL, Ould-Hocine Z, et al. (2002) Diversity of CTX-M-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett 209:161–168PubMedGoogle Scholar
  29. 29.
    Shah AA, Hasan F, Ahmed S, Hameed A (2004) Characteristics, epidemiology and clinical importance of emerging strains of Gram-negative bacilli producing extended-spectrum beta-lactamases. Res Microbiol 155:409–421PubMedCrossRefGoogle Scholar
  30. 30.
    Smith CL, Cantor CR (1987) Purification, specific fragmentation, and separation of large DNA molecules. Methods Enzymol 155:449–467PubMedCrossRefGoogle Scholar
  31. 31.
    Spanu T, Luzzaro F, Perilli M, Amicosante G, Toniolo A, Fadda G, et al. (2002) Occurrence of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae in Italy: Implications for resistance to beta-lactams and other antimicrobial drugs. Antimicrob Agents Chemother 46:196–202PubMedCrossRefGoogle Scholar
  32. 32.
    Tenover FC, Arbeit RD, Doering RV, Mickelsen PA, Murray BE, Persing DH, et al. (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239PubMedGoogle Scholar
  33. 33.
    Valverde A, Coque TM, Sanchez-Moreno MP, Rollan A, Baquero F, Canton R (2004) Dramatic increase in prevalence of fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae during nonoutbreak situations in Spain. J Clin Microbiol 42:4769–4775PubMedCrossRefGoogle Scholar
  34. 34.
    Wiener J, Quinn JP, Bradford PA, Goering RV, Nathan C, Bush K, et al. (1999) Multiple antibiotic-resistance Klebsiella and Escherichia coli in nursing homes. J Am Med Association 28: 517–523CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Luciene A. R. Minarini
    • 1
  • Ana C. Gales
    • 2
  • Izabel C. V. Palazzo
    • 1
  • Ana Lúcia C. Darini
    • 1
  1. 1.Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São Paulo, USPRibeirão PretoBrazil
  2. 2.Laboratório AlertaUniversidade Federal de São PauloUNIFESPBrazil

Personalised recommendations