Current Microbiology

, Volume 53, Issue 5, pp 388–395 | Cite as

Toward a Wolbachia Multilocus Sequence Typing System: Discrimination of Wolbachia Strains Present in Drosophila Species

  • Charalampos Paraskevopoulos
  • Seth R. Bordenstein
  • Jennifer J. Wernegreen
  • John H. Werren
  • Kostas BourtzisEmail author


Among the diverse maternally inherited symbionts in arthropods, Wolbachia are the most common and infect over 20% of all species. In a departure from traditional genotyping or phylogenetic methods relying on single Wolbachia genes, the present study represents an initial Multilocus Sequence Typing (MLST) analysis to discriminate closely related Wolbachia pipientis strains, and additional data on sequence diversity in Wolbachia. We report a new phylogenetic characterization of four genes (aspC, atpD, sucB, and pdhB), and provide an expanded analysis of markers described in previous studies (16S rDNA, ftsZ, groEL, dnaA, and gltA). MLST analysis of the bacterial strains present in 16 different DrosophilaWolbachia associations detected four distinct clonal complexes that also corresponded to maximum-likelihood identified phylogenetic clades. Among the 16 associations analyzed, six could not be assigned to MLST clonal complexes and were also shown to be in conflict with relationships predicted by maximum-likelihood phylogenetic inferences. The results demonstrate the discriminatory power of MLST for identifying strains and clonal lineages of Wolbachia and provide a robust foundation for studying the ecology and evolution of this widespread endosymbiont.


Clonal Complex Wolbachia Strain Allelic Profile MLST Scheme Wolbachia Surface Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Laura Baldo for her constructive comments and suggestions. The D. simulans (wMa) and D. innubila (wDin) were kindly provided by Prof. Bill Ballard and Prof. John Jaenike, respectively. This work was partially supported by intramural funds of the University of Ioannina to K. Bourtzis, by grants to J.J. Wernegreen from the National Institutes of Health (R01 GM62626-01) and the NASA Astrobiology Institute (NNA04CC04A), and to J.H. Werren and J.J. Wernegreen from the National Science Foundation (EF-0328363). This work was performed in part while S.R. Bordenstein held a National Research Council Research Associateship Award at the Marine Biological Laboratory.

Literature Cited

  1. 1.
    Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140PubMedCrossRefGoogle Scholar
  2. 2.
    Baldo L, Bordenstein S, Wernegreen JJ, Werren JH (2006) Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23:437–449PubMedCrossRefGoogle Scholar
  3. 3.
    Baldo L, Lo N, Werren JH (2005) Mosaic nature of the Wolbachia surface protein. J Bacteriol 187:5406–5418PubMedCrossRefGoogle Scholar
  4. 4.
    Bandi C, Anderson TJ, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265:2407–2413PubMedCrossRefGoogle Scholar
  5. 5.
    Bordenstein S, Rosengaus RB (2005) Discovery of a novel Wolbachia supergroup in isoptera. Curr Microbiol 51:393–398PubMedCrossRefGoogle Scholar
  6. 6.
    Bordenstein SR, O’Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710PubMedCrossRefGoogle Scholar
  7. 7.
    Bordenstein SR, Wernegreen JJ (2004) Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 21:1981–1991PubMedCrossRefGoogle Scholar
  8. 8.
    Bourtzis K, Dobson SL, Braig HR, O’Neill SL (1998) Rescuing Wolbachia have been overlooked. Nature 391:852–853PubMedCrossRefGoogle Scholar
  9. 9.
    Bourtzis K, Nirgianaki A, Markakis G, Savakis C (1996) Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics 144:1063–1073PubMedGoogle Scholar
  10. 10.
    Brayton KA, Kappmeyer LS, Herndon DR, Dark MJ, Tibbals DL, Palmer GH, McGuire TC, Knowles DP Jr (2005) Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc Natl Acad Sci USA 102:844–849PubMedCrossRefGoogle Scholar
  11. 11.
    Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T, Wernegreen JJ, Werren JH, Bandi C (2005) Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 151:4015–4022PubMedCrossRefGoogle Scholar
  12. 12.
    Casiraghi M, Werren JH, Bazzocchi C, Biserni A, Bandi C (2003) dnaA gene sequences from Wolbachia pipientis support subdivision into supergroups and provide no evidence for recombination in the lineages infecting nematodes. Parassitologia 45:13–18PubMedGoogle Scholar
  13. 13.
    Charlat S, Le Chat L, Mercot H (2003) Characterization of non-cytoplasmic incompatibility inducing Wolbachia in two continental African populations of Drosophila simulans. Heredity 90:49–55PubMedCrossRefGoogle Scholar
  14. 14.
    Charlat S, Nirgianaki A, Bourtzis K, Mercot H (2002) Evolution of Wolbachia-induced cytoplasmic incompatibility in Drosophila simulans and D. sechellia. Evolution 56:1735–1742PubMedCrossRefGoogle Scholar
  15. 15.
    Christensen H, Kuhnert P, Olsen JE, Bisgaard M (2004) Comparative phylogenies of the housekeeping genes atpD, infB and rpoB and the 16S rRNA gene within the Pasteurellaceae. Int J Syst Evol Microbiol 54:1601–1609PubMedCrossRefGoogle Scholar
  16. 16.
    Duron O, Lagnel J, Raymond M, Bourtzis K, Fort P, Weill M (2005) Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, superinfection and recombination. Mol Ecol 14:1561–1573PubMedCrossRefGoogle Scholar
  17. 17.
    Dyer KA, Jaenike J (2004) Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila: molecular evidence from the host and parasite genomes. Genetics 168:1443–1455PubMedCrossRefGoogle Scholar
  18. 18.
    Enright MC, Knox K, Griffiths D, Crook DW, Spratt BG (2000) Molecular typing of bacteria directly from cerebrospinal fluid. Eur J Clin Microbiol Infect Dis 19:627–630PubMedCrossRefGoogle Scholar
  19. 19.
    Feil EJ, Maiden MC, Achtman M, Spratt BG (1999) The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol 16:1496–1502PubMedGoogle Scholar
  20. 20.
    Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:e121PubMedCrossRefGoogle Scholar
  21. 21.
    Fukatsu T (1999) Acetone preservation: a practical technique for molecular analysis. Mol Ecol 8:1935–1945PubMedCrossRefGoogle Scholar
  22. 22.
    Giordano R, O’Neill SL, Robertson HM (1995) Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and D. mauritiana. Genetics 140:1307–1317PubMedGoogle Scholar
  23. 23.
    Hall TA (1999) BioEdit: a user-friendly biological sequence allignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  24. 24.
    Hoffmann AA (1988) Partial cytoplasmic incompatibility between two Australian populations of Drosophila melanogaster. Entomol Exp Appl 48:61–67CrossRefGoogle Scholar
  25. 25.
    Hoffmann AA, Clancy D, Duncan J (1996) Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity 76 (Pt 1):1–8PubMedGoogle Scholar
  26. 26.
    Hoffmann AA, Turelli M, Simmons GM (1986) Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40:692–701CrossRefGoogle Scholar
  27. 27.
    Huigens ME, Stouthamer R (2003) Parthenogenesis associated with Wolbachia. In: Bourtzis K, Miller T (eds) Insect symbiosis. Boca Raton, FL: CRC Press, pp. 247–266Google Scholar
  28. 28.
    James AC, Ballard JW (2000) Expression of cytoplasmic incompatibility in Drosophila simulans and its impact on infection frequencies and distribution of Wolbachia pipientis. Evolution 54:1661–1672 PubMedCrossRefGoogle Scholar
  29. 29.
    Jiggins FM, Hurst GD, Yang Z (2002) Host-symbiont conflicts: positive selection on an outer membrane protein of parasitic but not mutualistic Rickettsiaceae. Mol Biol Evol 19:1341–1349PubMedGoogle Scholar
  30. 30.
    Jiggins FM, von Der Schulenburg JH, Hurst GD, Majerus ME (2001) Recombination confounds interpretations of Wolbachia evolution. Proc Biol Sci 268:1423–1427PubMedCrossRefGoogle Scholar
  31. 31.
    Jolley KA, Feil EJ, Chan MS, Maiden MC (2001) Sequence type analysis and recombinational tests (START). Bioinformatics 17:1230–1231PubMedCrossRefGoogle Scholar
  32. 32.
    Koukou K, Pavlikaki H, Kilias J, Werren JH, Bourtzis K, Alahiotis SN (2006) Influence of antibiotic treatment and Wolbachia curing on sexual isolation among Drosophila melanogaster cage populations. Evolution 60:87–96PubMedCrossRefGoogle Scholar
  33. 33.
    Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C (2002) How many Wolbachia supergroups exist? Mol Biol Evol 19:341–346PubMedGoogle Scholar
  34. 34.
    Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145PubMedCrossRefGoogle Scholar
  35. 35.
    McGarry HF, Pfarr K, Egerton G, Hoerauf A, Akue JP, Enyong P, Wanji S, Klager SL, Bianco AE, Beeching NJ, Taylor MJ (2003) Evidence against Wolbachia symbiosis in Loa loa. Filaria J 2:9PubMedCrossRefGoogle Scholar
  36. 36.
    McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci USA 99:2918–2923PubMedCrossRefGoogle Scholar
  37. 37.
    McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2001) Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc Biol Sci 268:2565–2570PubMedCrossRefGoogle Scholar
  38. 38.
    Mercot H, Poinsot D (1998) Wolbachia transmission in a naturally bi-infected Drosophila simulans strain from New Caledonia. Entomol Exp Appl 86:97–103CrossRefGoogle Scholar
  39. 39.
    Min KT, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci USA 94:10792–10796PubMedCrossRefGoogle Scholar
  40. 40.
    O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702PubMedCrossRefGoogle Scholar
  41. 41.
    O’Neill SL, Karr TL (1990) Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348:178–180PubMedCrossRefGoogle Scholar
  42. 42.
    Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  43. 43.
    Riegler M, Sidhu M, Miller WJ, O’Neill SL (2005) Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 15:1428–1433PubMedCrossRefGoogle Scholar
  44. 44.
    Rigaud T (1997) Inherited microorganisms and sex determination of arthropod hosts. In: O’Neill SL, Hoffmann AA, Werren JH (eds), Influential passengers. Oxford: Oxford University Press, pp. 81–101Google Scholar
  45. 45.
    Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  46. 46.
    Rousset F, Solignac M (1995) Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proc Natl Acad Sci USA 92:6389–6393PubMedCrossRefGoogle Scholar
  47. 47.
    Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  48. 48.
    Salzberg SL, Hotopp JC, Delcher AL, Pop M, Smith DR, Eisen MB, Nelson WC (2005) Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 6:R23PubMedCrossRefGoogle Scholar
  49. 49.
    Schulenburg JH, Hurst GD, Huigens TM, van Meer MM, Jiggins FM, Majerus ME (2000) Molecular evolution and phylogenetic utility of Wolbachia ftsZ and wsp gene sequences with special reference to the origin of male-killing. Mol Biol Evol 17:584–600PubMedGoogle Scholar
  50. 50.
    Stouthamer R, Breeuwer JA, Hurst GD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102PubMedCrossRefGoogle Scholar
  51. 51.
    Taylor MJ (2000) Wolbachia bacteria of filarial nematodes in the pathogenesis of disease and as a target for control. Trans R Soc Trop Med Hyg 94:596–598PubMedCrossRefGoogle Scholar
  52. 52.
    van Loo IH, Heuvelman KJ, King AJ, Mooi FR (2002) Multilocus sequence typing of Bordetella pertussis based on surface protein genes. J Clin Microbiol 40:1994–2001PubMedCrossRefGoogle Scholar
  53. 53.
    Veneti Z, Clark ME, Zabalou S, Karr TL, Savakis C, Bourtzis K (2003) Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics 164:545–552PubMedGoogle Scholar
  54. 54.
    Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609PubMedCrossRefGoogle Scholar
  55. 55.
    Werren JH, Bartos JD (2001) Recombination in Wolbachia. Curr Biol 11:431–435PubMedCrossRefGoogle Scholar
  56. 56.
    Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci 261:55–63PubMedGoogle Scholar
  57. 57.
    Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69PubMedCrossRefGoogle Scholar
  58. 58.
    Xi Z, Khoo CC, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–328PubMedCrossRefGoogle Scholar
  59. 59.
    Zabalou S, Charlat S, Nirgianaki A, Lachaise D, Mercot H, Bourtzis K (2004) Natural Wolbachia infections in the Drosophila yakuba species complex do not induce cytoplasmic incompatibility but fully rescue the wRi modification. Genetics 167:827–834PubMedCrossRefGoogle Scholar
  60. 60.
    Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101:15042–15045PubMedCrossRefGoogle Scholar
  61. 61.
    Zhou W, Rousset F, O’Neil S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265:509–515PubMedCrossRefGoogle Scholar
  62. 62.
    Zhu Y, Fournier PE, Eremeeva M, Raoult D (2005) Proposal to create subspecies of Rickettsia conorii based on multi-locus sequence typing and an emended description of Rickettsia conorii. BMC Microbiol 5:11PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Charalampos Paraskevopoulos
    • 1
  • Seth R. Bordenstein
    • 2
  • Jennifer J. Wernegreen
    • 2
  • John H. Werren
    • 3
  • Kostas Bourtzis
    • 1
    Email author
  1. 1.Department of Environmental and Natural Resources ManagementUniversity of IoanninaAgrinioGreece
  2. 2.Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionThe Marine Biological LaboratoryWoods HoleUSA
  3. 3.Department of BiologyUniversity of RochesterRochesterUSA

Personalised recommendations