Current Microbiology

, Volume 50, Issue 6, pp 314–318

RpoS-Mediated Growth-Dependent Expression of the Escherichia coli tkt Genes Encoding Transketolases Isoenzymes

Article

Abstract

Escherichia coli tktA and tktB genes encode two transketolase isoenzymes involved in the pentose-phosphate pathway, In this study, two reporter lacZ fusions, tktA- and tktB-lacZ, were constructed to examine their transcriptional regulation on the E. coli chromosome. The tktA gene was induced in the exponential growth phase and suppressed in the stationary growth phase. However, the genetic elimination of the rpoS, whose product is an alternative sigma factor (RpoS), derepressed the tktA gene expression in the stationary growth phase, indicating that the RpoS sigma factor negatively regulates the tktA gene expression in the stationary growth phase. On the contrary, the tktB gene expression showed the highest value in the stationary growth phase and the RpoS positively regulated the tktB gene expression in the stationary growth phase. We also verified the role of the RpoS affecting the regulation of the tktA and tktB gene expression by the reverse transcription (RT)-PCR experiments. These results suggest that the differential growth-dependent expressions of the tktA and tktB genes are caused by the RpoS action.

Literature Cited

  1. 1.
    Canonaco, F, Hess, TA, Heri, S, Wang, T, Szyperski, T, Sauer, U 2001Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhAFEMS Microbiol Lett204247252PubMedGoogle Scholar
  2. 2.
    Eidels, L, Osborn, J 1971Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimuriumProc Natl Acad Sci USA6816731677PubMedGoogle Scholar
  3. 3.
    Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Syzperski T, Wuthrich K, Bailey JE, Sauer U (2002) Metabolic flux responses to pyruvate kinase knockout in Neidhardt FC (ed) Escherichia coli. J Bacteriol 184: 152–164PubMedGoogle Scholar
  4. 4.
    Ershov, YV, Gantt, RR, Cunningham, FX,Jr, Gantt, E 2002Isoprenoid biosynthesis in Synechocystis sp. strain PCC6803 is stimulated by compounds of the pentose phosphate cycle but Not by pyruvate or deoxyxylulose-5-phosphateJ Bacteriol18450455051PubMedGoogle Scholar
  5. 5.
    Fraenkel, DG 2002

    Glycolysis

    Neidhardt, FC eds. Escherichia coli and Salmonella typhimurium: Cellular and molecular biologyAmerican Society for MicrobiologyWashington, DC189198
    Google Scholar
  6. 6.
    Fraenkel, DG, Vinopal, RT 1973Carbohydrate metabolism in bacteriaAnnu Rev Microbiol2769100Google Scholar
  7. 7.
    Hengge-Aronis, R 1996

    Regulation of gene expression during entry into stationary phase

    Neidhardt, FC eds. Escherichia coli and Salmonella: Cellular and molecular biology, 2nd ed, vol 1American Society for MicrobiologyWashington, DC14971512
    Google Scholar
  8. 8.
    Iida, A, Teshiba, S, Mizobuchi, K 1993Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12J Bacteriol17553755383PubMedGoogle Scholar
  9. 9.
    Jishage, M, Ishihama, A 1995Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: Intracellular levels of σ70 and σ38J Bacteriol17768326835PubMedGoogle Scholar
  10. 10.
    Josephson, BJ, Fraenkel, DG 1969Transketolase mutants of Escherichia coliJ Bacteriol10012891295PubMedGoogle Scholar
  11. 11.
    Josephson, BJ, Fraenkel, DG 1974Sugar metabolism in transketolase mutants of Escherichia coliJ Bacteriol11810821089PubMedGoogle Scholar
  12. 12.
    Jung, IL, Kim, IG 2003Transcription of ahpC katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damageBiochem Biophys Res Commun301915922PubMedGoogle Scholar
  13. 13.
    Loewen, PC, Hu, B, Strutinsky, J, Sparling, R 1998Regulation in the rpoS regulon of Escherichia coliCan J Microbiol44707717PubMedGoogle Scholar
  14. 14.
    Miller, JH 1972Experiments in molecular geneticsCold Spring Harbor Laboratory pressCold Spring Harbor, NYGoogle Scholar
  15. 15.
    Pittard, AJ 2002

    Biosynthesis of the aromatic amino acids

    Neidhardt, FC eds. Escherichia and Salmonella typhimurium: Cellular and molecular biologyAmerican Society for MicrobiologyWashington, DC458484
    Google Scholar
  16. 16.
    Sambrook, J, Russell, DW 2001Molecular cloning: A laboratory manualed3Cold Spring Harbor, NYCold Spring Harbor Laboratory PressGoogle Scholar
  17. 17.
    Simons, RW, Houman, N, Kleckner, F 1987Improved single and multicopy lac-based cloning vectors for protein and operon fusionsGene538596PubMedGoogle Scholar
  18. 18.
    Sprenger, GA 1995Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12Arch Microbiol164324330PubMedGoogle Scholar
  19. 19.
    Wallace, BJ, Pittard, AJ 1969Regulation of 3-deoxy-D-arabino-heptulosonic 7-phosphate acid synthetase activity in relation to the synthesis of the aromatic vitamins in Escherichia coli K-12J Bacteriol99707712PubMedGoogle Scholar
  20. 20.
    Zhao, G, Winkler, ME 1994An Escherichia coli K-12 tktA tktB mutant deficient in transketolase activity requires pyridoxine (vitamin B6) as well as aromatic amino acids and vitamins for growthJ Bacteriol17661346138PubMedGoogle Scholar
  21. 21.
    Taschner, NP, Yagil, E, Spira, B 2004A differential effect of sigmaS on the expression of the PHO regulon genes of Escherichia coliMicrobiology15029852992PubMedGoogle Scholar
  22. 22.
    Lee, JS, Gralla, JD 2001Sigma38 (rpoS) RNA polymerase promoter engagement via −10 region nucleotidesJ Biol Chem2763006430071PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Radiation Biology, Environmental Radiation Research GroupKorea Atomic Energy Research InstituteYusong TaejonKorea

Personalised recommendations