Current Microbiology

, Volume 52, Issue 5, pp 400–406 | Cite as

Ammonium Toxicity in Bacteria

  • Tim Müller
  • Britta Walter
  • Astrid Wirtz
  • Andreas Burkovski


Although an excellent nitrogen source for most bacteria, ammonium was—in analogy to plant and animal systems—assumed be detrimental to bacteria when present in high concentrations. In this study, we examined the effect of molar ammonium concentrations on different model bacteria, namely, Corynebacterium glutamicum, Escherichia coli, and Bacillus subtilis. The studied bacteria are highly resistant to ammonium. When growth was impaired upon addition of molar (NH4)2SO4 concentrations, this was not caused by an ammonium-specific effect but was due to an enhanced osmolarity or increased ionic strength of the medium. Therefore, it was concluded that ammonium is not detrimental to C. glutamicum and other bacteria even when present in molar concentrations.


Glutamine Synthetase Ammonium Concentration Glutamate Dehydrogenase Corynebacterium Glutamicum Methylammonium 



The authors wish to thank Stephanie Kadow and Christine Eilender for technical support and Reinhard Krämer for continuous interest and support.

Literature Cited

  1. 1.
    Abe S, Takayama K, Kinoshita S (1967) Taxonomical studies on glutamic acid producing bacteria. J Gen Microbiol 13:279–301Google Scholar
  2. 2.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. New York: Greene Publishing Associates and Wiley Interscience, John Wiley and SonsGoogle Scholar
  3. 3.
    Beckers G, Nolden L, Burkovski A (2001) Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147:2961–2970PubMedGoogle Scholar
  4. 4.
    Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ (2001) Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255–4258CrossRefPubMedGoogle Scholar
  5. 5.
    Britto DT, Konzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584CrossRefGoogle Scholar
  6. 6.
    Burkovski A (2003) I do it my way: Regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Arch Microbiol 179:83–88PubMedGoogle Scholar
  7. 7.
    Burkovski A (2003) Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiol Rev 27:617–628CrossRefPubMedGoogle Scholar
  8. 8.
    Burkovski A (2005) Nitrogen metabolism and its regulation. In: Bott M, Eggeling L (eds) Handbook of Corynebacterium glutamicum. Boca Raton, FL: CRC Press, p 99–118Google Scholar
  9. 9.
    Davis BD, Mingioli ES (1950) Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol 60:17–28PubMedGoogle Scholar
  10. 10.
    Detsch C, Stülke J (2003) Ammonium utilization in Bacillus subtilis: transport and regulatory functions of NrgA and NrgB. Microbiology 149:3289–3297CrossRefPubMedGoogle Scholar
  11. 11.
    Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172CrossRefPubMedGoogle Scholar
  12. 12.
    Jakoby M, Tesch M, Sahm H, Krämer R, Burkovski A (1997) Isolation of the Corynebacterium glutamicum glnA gene encoding glutamine synthetase I. FEMS Microbiol Lett 154:81–88PubMedGoogle Scholar
  13. 13.
    Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A (2000) AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37:964–977CrossRefPubMedGoogle Scholar
  14. 14.
    Javelle A, Thomas G, Marini A-M, Krämer R, Merrick M (2005) In vivo functional characterization of the Escherichia coli ammonium channel AmtB: evidence for metabolic coupling of AmtB to glutamine synthetase. Biochem J 390:215–222PubMedGoogle Scholar
  15. 15.
    Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407PubMedGoogle Scholar
  16. 16.
    Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603PubMedGoogle Scholar
  17. 17.
    Khademi S, O’Connell J III, Remis J, Robles-Colmenares Y, Miercke LJW, Stroud RM (2005) Mechanism of ammonia transport by Amt/MEP/Rh: Structure of AmtB at 1.35 A. Science 305:1587–1594Google Scholar
  18. 18.
    Kleiner D (1981) The transport of NH3 and NH4+ across biological membranes. Biochim Biophys Acta 639:41–52PubMedGoogle Scholar
  19. 19.
    Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol Rev 32:87–100Google Scholar
  20. 20.
    Kleiner D (1993) Ammonium transport systems—an overview. In: Bakker EP (ed) Alkali cation transport systems in prokaryotes. Boca Raton, FL: CRC PressGoogle Scholar
  21. 21.
    Lindroth P, Mopper K (1979) High performance liquid chromatography determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal Chem 51:1667–1674CrossRefGoogle Scholar
  22. 22.
    Martinelle K, Häggström L (1993) Mechanisms of ammonia and ammonium ion toxicity in animal cells: Transport across cell membranes. J Biotechnol 30:339–350CrossRefPubMedGoogle Scholar
  23. 23.
    Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Krämer R, Burkovski A (2001) Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: Role of Amt and AmtB. Microbiology 147:135–143PubMedGoogle Scholar
  24. 24.
    Nolden L, Farwick M, Krämer R, Burkovski A (2001) Glutamine synthetases in Corynebacterium glutamicum: transcriptional control and regulation of activity. FEMS Microbiol Lett 201:91–98PubMedGoogle Scholar
  25. 25.
    Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382PubMedGoogle Scholar
  26. 26.
    Ritchie RJ, Gibson J (1987) Permeability of ammonia, methylamine and ethylamine in the cyanobacterium Synechococcus R-2 (Anacystis nidulans) PCC7942. J Membr Biol 95:131–142Google Scholar
  27. 27.
    Ritchie RJ, Gibson J (1987) Permeability of ammonia and amines in Rhodobacter spheroides and Bacillus firmus. Arch Biochem Biophys 258:322–341CrossRefGoogle Scholar
  28. 28.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory PressGoogle Scholar
  29. 29.
    Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73PubMedGoogle Scholar
  30. 30.
    Siewe RM, Weil B, Krämer R (1995) Glutamine uptake by a sodium-dependent secondary transport system in Corynebacterium glutamicum. Arch Microbiol 164:98–103CrossRefGoogle Scholar
  31. 31.
    Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Krämer R (1996) Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271:5398–5403PubMedGoogle Scholar
  32. 32.
    Soupene E, He L, Yan D, Kustu S (1998) Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci USA 95:7030–7034CrossRefPubMedGoogle Scholar
  33. 33.
    Soupene E, Lee H, Kustu S (2002) Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. Proc Natl Acad Sci USA 99:3926–3931PubMedGoogle Scholar
  34. 34.
    van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545PubMedGoogle Scholar
  35. 35.
    von Wirén N, Gazzarrini S, Gojon A, Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261Google Scholar
  36. 36.
    von Wirén N, Merrick M (2004) Regulation and function of ammonium carriers in plants, yeast and bacteria. Trends Curr Genet 9:95–120Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Tim Müller
    • 1
    • 2
  • Britta Walter
    • 1
    • 3
  • Astrid Wirtz
    • 1
  • Andreas Burkovski
    • 1
    • 3
  1. 1.Institut für BiochemieUniversität zu KölnGermany
  2. 2.International Max Planck Research SchoolMax-Planck-Institut für ZüchtungsforschungGermany
  3. 3.Lehrstuhl für MikrobiologieFriedrich-Alexander-Universität Erlangen-NürnbergGermany

Personalised recommendations