Skip to main content
Log in

Gp63-Like Molecules in Phytomonas serpens: Possible Role in the Insect Interaction

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, we demonstrated that metallopeptidase inhibitors (EDTA, EGTA, and 1,10-phenanthroline) were able to arrest Phytomonas serpens growth in distinct patterns. This parasite released exclusively metallopeptidases to the extracellular environment, whereas in cellular extracts only cysteine peptidases were detected. In addition, an extracellular polypeptide of 60 kDa reacted in Western blotting probed with polyclonal antibody raised against gp63 of Leishmania amazonensis. In the cellular parasite extract, this antibody recognized bands migrating at 63 and 52 kDa, which partitioned on both aqueous and membrane-rich fractions. Flow cytometry and fluorescence microscopy analyses showed that the gp63-like molecules have a surface location. Moreover, phospholipase C (PLC)-treated parasites reduced the number of gp63-positive cells. The anti-cross-reacting determinant (CRD) and anti-gp63 antibodies recognized the 60-kDa band in the supernatant from PLC-treated cells, suggesting that this protein is glycosylphosphatidylinositol-anchored to the plasma membrane. This is the first report on the presence of gp63-like molecules in members of the Phytomonas genus. The pretreatment of the parasites with anti-gp63 antibody significantly diminished their adhesion index to explanted salivary glands of the phytophagous insect Oncopeltus fasciatus, suggesting a potential involvement of the gp63-like molecules in the adhesive process of this plant trypanosomatid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Literature Cited

  1. Almeida FVS, Giovanni-De-Simone S, Branquinha MH, Vermelho AB (2003) Extracellular metalloproteinase activity in Phytomonas françai. Parasitol Res 89:320–322

    PubMed  Google Scholar 

  2. Bangs JD, Ransom DA, Nimick M, Christie G, Hooper NM (2001) In vitro cytocidal effects on Trypanosoma brucei and inhibition of Leishmania major GP63 by peptidomimetic metalloprotease inhibitors. Mol Biochem Parasitol 114:111–117

    Article  PubMed  CAS  Google Scholar 

  3. Bonaldo MC, D’Escoffier LN, Salles JM, Goldenberg S (1991) Characterization and expression of protease during Trypanosoma cruzi metacyclogenesis. Exp Parasitol 73:44–51

    Article  PubMed  CAS  Google Scholar 

  4. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607

    PubMed  CAS  Google Scholar 

  5. Branquinha MH, Vermelho AB, Goldenberg S, Bonaldo MC (1996) Ubiquity of cysteine- and metalloproteinase activities in a wide range of trypanosomatids. J Eukaryot Microbiol 43:131–135

    PubMed  CAS  Google Scholar 

  6. Camargo EP (1999) Phytomonas and other trypanosomatid parasites of plants and fruit. Adv Parasitol 42: 29–112

    Article  PubMed  CAS  Google Scholar 

  7. d’Avila-Levy CM, Melo ACN, Vermelho AB, Branquinha MH (2001) Differential expression of proteolytic enzymes in endosymbiont-harboring Crithidia species. FEMS Microbiol Lett 202:73–77

    PubMed  CAS  Google Scholar 

  8. d’Avila-Levy CM, Souza RF, Gomes RC, Vermelho AB, Branquinha MH (2003) A metalloproteinase extracellularly released by Crithidia deanei. Can J Microbiol 49:625–632

    Article  PubMed  CAS  Google Scholar 

  9. d’Avila-Levy CM, Araújo FM, Vermelho AB, Soares RMA, Santos ALS, Branquinha MH (2005) Proteolytic expression in Blastocrithidia culicis: influence of the endosymbiont and similarities with virulence factors of pathogenic trypanosomatids. Parasitology 130:413–420

    Article  PubMed  CAS  Google Scholar 

  10. Dias FA (2003) Interação do tripanossomatídeo Phytomonas serpens com glândula salivares do inseto fitófago Oncopeltus fasciatus. M.Sc. Thesis, Institute of Microbiology Prof. Paulo de Góes, Federal University of Rio de Janeiro, Brazil

  11. Dollet M (1984) Plant diseases caused by flagellate protozoa (Phytomonas). Annu Rev Phytopathol 22:115–132

    Article  Google Scholar 

  12. Fampa P, Corrêa-da-Silva MS, Lima DC, Oliveira SMP, Motta MCM, Saraiva EMB (2003) Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines. Int J Parasitol 33:1019–1026

    Article  PubMed  Google Scholar 

  13. Ferguson MAJ (1999) The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112:2799–2809

    PubMed  CAS  Google Scholar 

  14. Mcghee RB, Hanson WL (1964) Comparison of the life cycle of Leptomonas oncopelti and Phytomonas elmasiani. J Protozool 11:555–562

    PubMed  CAS  Google Scholar 

  15. Melo ACN, d’Avila-Levy CM, Branquinha MH, Vermelho AB (2002) Crithidia guilhermei: gelatin- and hemoglobin-degrading extracellular metalloproteinases. Exp Parasitol 102:150–156

    Article  PubMed  CAS  Google Scholar 

  16. Romeiro A, Solé-Cava AM, Sousa MA, De Souza W, Attias M (2000) Ultrastructural and biochemical characterization of promastigotes and cystics forms of Leptomonas wallacei n. sp. isolated from the intestine of its natural hosts Oncopeltus fasciatus (Hemiptera: Lygaeidae). J Eukariot Microbiol 47:208–220

    Article  PubMed  CAS  Google Scholar 

  17. Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21

    Article  PubMed  CAS  Google Scholar 

  18. Santos ALS, Abreu CM, Alviano CS, Soares RMA (2002) Activation of the glycosylphosphatidylinositol-anchored membrane proteinases upon release from Herpetomonas samuelpessoai by phospholipase C. Curr Microbiol 45:293–298

    Article  PubMed  CAS  Google Scholar 

  19. Santos ALS, Abreu CM, Alviano CS, Soares RMA (2005) Use of proteolytic enzymes as an additional tool for trypanosomatid identification. Parasitology 130:79–88

    Article  PubMed  CAS  Google Scholar 

  20. Santos ALS, d’Avila-Levy CM, Dias FA, Pereira FM, Elias CGR, Branquinha MH, Souto-Padrón T, Alviano CS, Soares RMA (2006) Phytomonas serpens: cysteine protease inhibitors interfere with growth, ultrastructure and host adhesion. Int J Parasitol 35:47–56

    Article  CAS  Google Scholar 

  21. Seay MB, Heard PL, Chaudhuri G (1996) Surface Zn-proteinase as a molecule for defense of Leishmania mexicana amazonensis promastigotes against cytolysis inside macrophage phagolysosomes. Infect Immun 64:5129–5137

    PubMed  CAS  Google Scholar 

  22. Vermelho AB, Almeida FVS, Bronzato LS, Branquinha MH (2003) Extracellular metalloproteinases in Phytomonas serpens. Can J Microbiol 49:221–224

    Article  PubMed  CAS  Google Scholar 

  23. Yao C, Donelson JE, Wilson ME (2003) The major surface protease (MSP or GP63) of Leishmania sp. biosynthesis, regulation of expression, and function. Mol Biochem Parasitol 132:1–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Brazilian Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCT/CNPq), Conselho de Ensino para Graduados e Pesquisa (CEPG/UFRJ) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Fundação Universitária José Bonifácio (FUJB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta H. Branquinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

d’Avila-Levy, C.M., Santos, L.O., Marinho, F.A. et al. Gp63-Like Molecules in Phytomonas serpens: Possible Role in the Insect Interaction. Curr Microbiol 52, 439–444 (2006). https://doi.org/10.1007/s00284-005-0222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-0222-8

Keywords

Navigation