Current Microbiology

, Volume 51, Issue 6, pp 379–384 | Cite as

Characterization of Exopolysaccharides Produced by Cyanobacteria Isolated from Polynesian Microbial Mats

  • Laurent RichertEmail author
  • Stjepko Golubic
  • Roland Le Guédès
  • Jacqueline Ratiskol
  • Claude Payri
  • Jean Guezennec


Six cyanobacterial isolates recovered from Polynesian microbial mats, called “kopara,” were cultured using laboratory-closed photobioreactors and were shown to produce exopolymers as released and capsular exopolysaccharides (EPS). These polymers have been chemically characterized using colorimetric and elemental assays, infrared spectrometry, and gas chromatography. Both capsular and released EPS consisted of 7 to 10 different monosaccharides with neutral sugars predominating. Interestingly, four isolates exhibited sulfate contents ranging from 6% to 19%. On the basis of preliminary data, cyanobacteria from this unusual ecosystem appear to be an important source of novel EPS of a great interest in terms of their biological activities.


Neutral Sugar Phormidium Cyanobacterial Strain Uronic Acid Content Trace Metal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the CAIRAP SA (Arue, Tahiti) for financial support. International contacts and collaboration were supported by the Boston University Marine Program, Hanse Institute for Advanced Studies, Alexander von Humboldt Foundation and the Visiting Professor Program of the University of Marseille.

Literature Cited

  1. 1.
    Adhikary S (1998) Polysaccharides from mucilaginous enveloppe layers of cyanobacteria and their ecological significance. J Sci Indust Res 57:454-466Google Scholar
  2. 2.
    Baba M, Pauwels R, Balzarini J, Arnout J, Desmyter J, De Clercq E (1988) Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci U S A 85:6132–6136PubMedGoogle Scholar
  3. 3.
    Bar-or Y, Shilo M (1987) Characterization of macromolecular flocculants produced by Phormidium sp. strain J−1 and by Anabaenopsis circularis PCC6720. Appl Environ Microbiol 53:2226–2230PubMedGoogle Scholar
  4. 4.
    Benedetti LM, Topp E, Stella VJ (1989) A novel drug delivery system: Microspheres of hyaluronic acid derivatives. In: Sutherland IW (ed) Biomedical and biotechnological advances in industrial polysaccharides. New York, NY: Gordon and Breach, pp 27–33Google Scholar
  5. 5.
    Bertocchi C, Navarini L, Cesàro A, Anastasio M (1990) Polysaccharides from cyanobacteria. Carbohydrate Polymers 12:127–153CrossRefGoogle Scholar
  6. 6.
    Cesàro A, Liut G, Bertocchi C, Navarini L, Urbani R (1990) Physicochemical properties of the exocellular polysaccharide from Cyanospira capsulata. Int J Biol Macromol 12:79–84PubMedGoogle Scholar
  7. 7.
    Choi C-W, Yoo S-A, Oh I-H, Park S-H (1998) Characterization of an extracellular flocculating substance produced by a planktonic cyanobacterium, Anabaena sp. Biotechnol Lett 20:643–646Google Scholar
  8. 8.
    de Caire GZ, de Cano MS, de Mule MCZ, Palma RM, Colombo K (1997) Exopolysaccharide of Nostoc muscorum (cyanobacteria) in the aggregation of soil particles. J Appl Phycol 9:249–253Google Scholar
  9. 9.
    De Philippis R, Sili C, Tassinato G, Vincenzini M, Materassi R (1991) Effects of growth conditions on exopolysaccharide production by Cyanospira capsulata. Bioresource Technol 38:101–104Google Scholar
  10. 10.
    De Philippis R, Margheri MC, Pelosi E, Ventura S (1993) Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. J Appl Phycol 5:387–394CrossRefGoogle Scholar
  11. 11.
    De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175Google Scholar
  12. 12.
    De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation : A review. J Appl Phycol 13:293–299Google Scholar
  13. 13.
    Défarge C (1983) Contribution à l’étude géochimique et pétrologique des formations protostromatolitiques de Polynésie. Application à la connaissance des mécanismes de la précipitation des carbonates de calcium au sein de matières organiques sédimentaires. Doctoral dissertation, Orléans, France: Université d’Orléans, pp 163Google Scholar
  14. 14.
    Filisetti-Cozzi T, Carpita N (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162PubMedGoogle Scholar
  15. 15.
    Flaibani A, Olsen Y, Painter T (1989) Polysaccharides in desert reclamation: Compositions of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydrate Res 190:235–248CrossRefGoogle Scholar
  16. 16.
    Forni C, Telo FR, Caiola MG (1997) Comparative analysis of the polysaccharides produced by different species of Microcystis (Chroococcales, Cyanophyta). Phycologia 36:181–185CrossRefGoogle Scholar
  17. 17.
    Geresh S, Mamontov A, Weinstein J (2002) Sulfation of extracellular polysaccharides of red microalgae: Preparation, characterization and properties. J Biochem Biophys Methods 50:179–187CrossRefPubMedGoogle Scholar
  18. 18.
    Gloaguen V, Morvan H, Hoffmann L, Plancke Y, Wieruszeski JM, Lippens G, et al. (1999) Capsular polysaccharide produced by the thermophilic cyanobacterium Mastigocladus laminosus—Structural study of an undecasaccharide obtained by lithium degradation. Eur J Biochem 266:762–770CrossRefPubMedGoogle Scholar
  19. 19.
    Gloaguen W, Morvan H, Hoffmann L (1995) Released and capsular polysaccharides of Oscillatoriaceae (Cyanophyceae, Cyanobacteria). Algol Stud 78:53–69Google Scholar
  20. 20.
    Greco RM, Iocono JA, Ehrlich HP (1998) Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix. J Cell Physiol 177:465–473CrossRefPubMedGoogle Scholar
  21. 21.
    Gutnick D (1997) Engineering polysaccharides for biosorption of heavy at oil/water interfaces. Res Microbiol 148:519–521PubMedGoogle Scholar
  22. 22.
    Hoiczyk E (1998) Structural and biochemical analysis of the sheath of Phormidium uncinatum. J Bacteriol 180:3923–3932PubMedGoogle Scholar
  23. 23.
    Huheihel M, Ishanu V, Tal J, Arad (Malis) S (2002) Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo. J Biochem Biophys Methods 50:189–200CrossRefPubMedGoogle Scholar
  24. 24.
    Lehmann M, Wöber G (1978) Continuous cultivation in a chemostat of the phototrophic procaryote, Anacystis nidulans, under nitrogen-limiting conditions. Mol Cell Biochem 19:155–163CrossRefPubMedGoogle Scholar
  25. 25.
    Li P, Liu Z, Xu R (2001) Chemical characterization of the released polysaccharide from the cyanobactreium Aphanothece halophytica GR02. J Appl Phycol 13:71–77CrossRefGoogle Scholar
  26. 26.
    Lijour Y, Gentric E, Deslandes E, Guezennec J (1994) Estimation of the sulfate content of hydrothermal vent bacterial polysaccharides by Fourier transform infrared spectroscopy. Anal Biochem 220:244–248CrossRefPubMedGoogle Scholar
  27. 27.
    Mao CL, Andrefouet S, Bothorel V, Guezennec M, Rougeaux H, Guezennec J, et al. (2001) Physical, chemical, and microbiological characteristics of microbial mats (KOPARA) in the South Pacific atolls of French Polynesia. Can J Microbiol 47:994–1012Google Scholar
  28. 28.
    Matsuda M, Shigeta S, Okutani K (1999) Antiviral activities of marine Pseudomonas polysaccharides and their oversulfated derivatives. Mar Biotechnol 1:68–73PubMedGoogle Scholar
  29. 29.
    Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T, et al. (1998) Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis 16:541–50CrossRefPubMedGoogle Scholar
  30. 30.
    Montreuil J, Bouquelet S, Debray H, Fournet B, Spik G, Strecker G (1986) Glycoproteins. In: Kennedy JF (ed) Carbohydrate analysis: A practical approach. Oxford, UK: IRL Press, pp 143–204Google Scholar
  31. 31.
    Moreno J, Vargas MA, Olivares H, Rivas J, Guerrero MG (1998) Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J Biotechnol 60:175–182CrossRefGoogle Scholar
  32. 32.
    Morris GA, Li P, Puaud M, Liu Z, Mitchell JR, Harding SE (2001) Hydrodynamic characterisation of the exopolysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02: a comparison with xanthan. Carbohydrate Polymers 44:261–268CrossRefGoogle Scholar
  33. 33.
    Morvan H, Gloaguen V, Vebret L, Joset F, Hoffmann L (1997) Structure-function investigations on capsular polymers as a necessary step for new biotechnological applications: The case of the cyanobacterium Mastigocladus laminosus. Plant Physiol Biochem 35:671–683Google Scholar
  34. 34.
    Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, et al. (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry 52:639–647CrossRefGoogle Scholar
  35. 35.
    Nishino T, Nagumo T (1992) Anticoagulant and antithrombin activities of oversulfated fucans. Carbohydrate Res 229:355–362CrossRefGoogle Scholar
  36. 36.
    Okutani K (1985) Isolation and fractionation of an extracellular polysaccharide from marine Vibrio. Bull Jpn Soc Sci Fish 51:493–496Google Scholar
  37. 37.
    Panoff J-M, Priem B, Morvan H, Joset F (1988) Sulphated exopolysaccharides produced by two unicellular strains of cyanobacteria, Synechocystis PCC6803 and 6714. Arch Microbiol 150:558–563CrossRefGoogle Scholar
  38. 38.
    Reddy KJ, Soper BW, Tang J, Bradley RL (1996) Phenotypic variation in exopolysaccharide production in the marine, aerobic nitrogen-fixing unicellular cyanobacterium Cyanothece sp. World J Microbiol Biotechnol 12:311–318CrossRefGoogle Scholar
  39. 39.
    Richert L (2004) Caractérisation de souches et d’exopolysaccharides de cyanobactéries et de micro-algues du “kopara” de Rangiroa-Tuamotu, Polynésie française. Papeete, Polynésie Française  : Université de Polynésie Française, pp 229Google Scholar
  40. 40.
    Rimington C (1931) The carbohydrate complex of serum protein. II: Improved method for isolation and redetermination of structure. Isolation of glucosaminodimannose from protein of ox blood. Biochem J 25:1062–1071PubMedGoogle Scholar
  41. 41.
    Rougeaux H, Guezennec M, Mao CL, Payri C, Deslandes E, Guezennec J (2001) Microbial communities and exopolysaccharides from Polynesian mats. Mar Biotechnol 3:181–187CrossRefPubMedGoogle Scholar
  42. 42.
    Shah V, Garg N, Madamwar D (1999) Exopolysaccharide production by a marine Cyanobacterium cyanothece sp.: Application in dye removal by its gelation phenomenon. Appl Biochem Biotechnol 82:81–90Google Scholar
  43. 43.
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Garther FK, Provenzano MD, et al. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76-85CrossRefPubMedGoogle Scholar
  44. 44.
    Sudo H, Burgess JG, Takemasa H, Nakamura N, Matsunaga T (1995) Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia. Curr Microbiol 30:219–222CrossRefGoogle Scholar
  45. 45.
    Sutherland IW (1996) Products of primary metabolism. In: Reed G (eds Biotechnology. Weinheim, Germany: VCH, pp 613–657Google Scholar
  46. 46.
    Tease BE, Walker RW (1987) Comparative composition of the sheath of the cyanobacterium Gloeothece ATCC27152 cultured with and without combined nitrogen. J Gen Microbiol 133:3331–3339Google Scholar
  47. 47.
    Tzianabos AO (2000) Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic functions. Crit Microbiol Rev 13:523–533Google Scholar
  48. 48.
    Vincenzini M, De Philippis R, Sili C, Materassi R (1990) Studies on exopolysaccharide release by diazotrophic batch cultures of Cyanospira capsulata. Appl Microbiol Biotechnol 34:392–396CrossRefGoogle Scholar
  49. 49.
    Volpi N, Sandri I, Venturelli T (1995) Activity of chrondroitin ABC lyase and hyaluronidase on free-radical degraded chondroitin sulfate. Carbohydrate Res 279:193–200CrossRefGoogle Scholar
  50. 50.
    Walne PR (1966) Experiments in the large-scale culture of the larvae of Ostrea edulis. L Fish Minist Agric Fish Food (GB) 25:53Google Scholar
  51. 51.
    Weiner R, Langille S, Quintero E (1995) Structure, function and immunochemistry of bacterial exopolysaccharides. J Ind Microbiol 15:339–346CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Laurent Richert
    • 1
    Email author
  • Stjepko Golubic
    • 2
  • Roland Le Guédès
    • 3
  • Jacqueline Ratiskol
    • 4
  • Claude Payri
    • 1
  • Jean Guezennec
    • 4
  1. 1.Laboratoire d’Ecologie MarineUniversité de la Polynésie FrançaiseFaaa, Tahiti
  2. 2.Biological Science CenterBoston UniversityBostonUSA
  3. 3.Laboratoire VP/PBA, Centre de NantesFrench Research Institute for Exploitation of the SeaNantesFrance
  4. 4.Laboratoire VP/BMM, Centre de BrestFrench Research Institute for Exploitation of the SeaPlouzaneFrance

Personalised recommendations