Advertisement

Current Microbiology

, Volume 50, Issue 5, pp 257–261 | Cite as

Boophilus microplus Infection by Beauveria amorpha andBeauveria bassiana: SEM Analysis and Regulation of Subtilisin-like Proteases and Chitinases

  • Roberta Alvares Campos
  • Walquíria Arruda
  • Juliano Tomazzoni Boldo
  • Márcia Vanusa da Silva
  • Neiva Monteiro de Barros
  • João Lúcio de Azevedo
  • Augusto Schrank
  • Marilene Henning Vainstein
Article

Abstract

Beauveria bassiana is a well-known broad-range arthropod pathogen which has been used in biological control of several pest insects and ticks such as Boophilus microplus. Beauveria amorpha has both endophytic and entomopathogenic characteristics, but its capacity for biological control has still not been studied. During the processes of host infection, B. bassiana and B. amorpha produce several hydrolytic extracellular enzymes, including proteases and chitinases, which probably degrade the host cuticle and are suggested to be pathogenicity determinants. To access the role of these enzymes during infection in the tick B. microplus, we analyzed their secretion during fungus growth in single and combined carbon sources, compared to complex substrates such as chitin and B. microplus cuticle. Chitin and tick cuticle-induced chitinase in both fungus and protease was induced only by tick cuticle. SEM analysis of B. amorpha and B. bassiana infecting B. microplus showed apressorium formation during penetration on cattle tick cuticle.

Keywords

Chitin Chitinase Scan Electron Microscopy Analysis Entomopathogenic Fungus Conidiogenous Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by grants and fellowships from FAPERGS, CNPq, CAPES, and PADCT. We thank Dr. Ida Chapaval Pimentel for B. amorpha endophytic isolates.

Literature Cited

  1. 1.
    Altshul, SF, Gish, W, Myers, EW, Lipman, DJ 1990Basic local alignment search toolJ Mol Bio215403410CrossRefPubMedGoogle Scholar
  2. 2.
    Alves, SB 1998Controle Microbiano de Insetos. São PauloFund Est Agrários Luiz de Queiroz, PiracicabatBrazilGoogle Scholar
  3. 3.
    Barreto, CC, Staats, CC, Schrank, A, Vainstein, MH 2004Distribution of chitinases in the entomopathogen Metarhizium anisopliae and effect of N-acetyglucosamine in protein secretionCurr Microbiol48102107CrossRefPubMedGoogle Scholar
  4. 4.
    Bidochka, MJ, St. Leger, RJ, Roberts, DW 1997Mechanisms of deuteromycete fungal infections in grasshoppers and locusts: an overviewMem Entomol Soc Can171213224Google Scholar
  5. 5.
    Bing, LA, Lewis, LC 1993Occurrence of entomopathogen Beauveria bassiana (Balsamo) Vuillemin in diferents tillage regimes and in Zea mays L. and virulance towards Ostrinia nubilalis (Hübner)Agr Ecos Environ45147156CrossRefGoogle Scholar
  6. 6.
    Bradford, MM 1976A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem72248254PubMedGoogle Scholar
  7. 7.
    Castrillo, LA, Vandenberg, JD, Wraigth, SP 2003Strain-specific detection of introduced Beauveria bassiana in africultural fields by use of sequence-characterized amplified region markersJ Inv Pathol827583CrossRefGoogle Scholar
  8. 8.
    Clarkson, JM, Charnley, AK 1996New insights into mechanisms of fungal pathogenesis in insectsTrends Microbiot4197204CrossRefGoogle Scholar
  9. 9.
    Cove, DL 1966The induction and repression of nitrate reductase in the fungus Aspergillus nidulansBiochiem Biophys Acta1135156Google Scholar
  10. 10.
    Deising, HB, Werner, S, Wernitz, M 2000The role of fungal appressoria in plant infectionMicrobes Infect216311641CrossRefPubMedGoogle Scholar
  11. 11.
    Ebata, Y, Yamamoto, H, Uchiyama, T 1998Chemical composition of the glue from appressoria of Magnaporthe griseaBiosci Biotech Biochem62672674CrossRefGoogle Scholar
  12. 12.
    Frazzon, APG, Da Silva Vaz Junior, I, Masuda, A, Schrank, A, Vainstein, MH 2000In vitro assessment of Metarhizium anisopliae isolates to control the cattle tick Boophilus microplusVet Parasitol94117125CrossRefPubMedGoogle Scholar
  13. 13.
    Furlong, MJ, Groden, E 2003Starvation induced stress and the susceptibility of the Colorado potato beetle, Leptinotarsa decemlineata, to infection by Beauveria bassianaJ Inv Pathol83127138CrossRefGoogle Scholar
  14. 14.
    Glare, TR, Inwood, AJ 1998Morphological and genetic characterization of Beauveria spp. from New ZealandMycol Res102205256CrossRefGoogle Scholar
  15. 15.
    Goettel, MS, Leger, RJ, Rizzo, NW, Staples, RC, Roberts, DW 1989Ultrastructural localization of a cuticle degrading protease prodiced by the entomopathogenic fungus Metarhizium anisopliae during penetration of host cuticleJ Gen Microbiol1352223 2239Google Scholar
  16. 16.
    Hackman, RH, Goldberg, M 1987Comparative study of some expanding arthropod cuticles: the relation between composition, structure and functionJ Insect Physiol333950CrossRefGoogle Scholar
  17. 17.
    Hajek AE, wraight SP, Vandenberg JD, (2001) Control of arthropods using pathogenic fungi. In: Pointing SB, Hyde KD (eds). Bio-exploitation of filamentous fungi. Fungal. Diversity research series 6. pp 309–347 Google Scholar
  18. 18.
    Joshi, L, St. Leger, RJ, Bidochka, MJ 1995Cloning of cuticle-degrading protease from the entomophatogenic fungus, Beauveria bassinaFEMS Microbiol Lett125211218CrossRefPubMedGoogle Scholar
  19. 19.
    Kaaya, GP, Hassan, S 2000Entomogenous fungi as promising biopesticides for tick controlEXP Appl Acarol24913926CrossRefPubMedGoogle Scholar
  20. 20.
    Kaaya, GP, Munyinyi, DM 1995Biocontrol Potential of the entomogenous fungi Beauveria bassiana and Metarhizium anisopliae for tsetse flies (Glossina ssp.) at developmental sitesJ Inv Pathol66237241CrossRefGoogle Scholar
  21. 21.
    Kaaya, GP, Mwangi, EM, Ouna, EA 1996Prospects for biological control of livestock tick Rhipecephalus appendiculatus and Amblyomma variegatum, using the entomogenous fungi Beauveria bassiana and Metarhizium anisopliaeJ Inv pathol671520CrossRefGoogle Scholar
  22. 22.
    Krieger de Moraes, C, Schrank, A, Vainstein, MH 2003Regulation of extracellular chitinases and proteases in the entomopathogen and acaricide Metarhizium anisopliaeCurr Microbial46205 210CrossRefGoogle Scholar
  23. 23.
    Monteiro, AC, Fiorin, AC, Correia, ACB 1998Pathogenicity of isolates of Metarhizium anisopliae (Metsch.) Sorokin towards the cattle tick Boophilus microplus (Can.) (Acari: Ixodidae) under laboratory conditionsRel Microbiol29109112Google Scholar
  24. 24.
    Muro, MA, Mehta, S, Moore, D 2003The use of amplified fragment length polymorphism for molecular analysis of Beauveria bassiana isolates from Kenya and other countries, and their correlation with host and geographical originFEMS Microbiol Lett229242257Google Scholar
  25. 25.
    St Leger, RJ, Cooper, RM, Charnley, AK 1986aCuticle-degrading enzymes of entomopathogenic fungi: cuticle degradation in vitro by enzymes from entomopathogensJ Inv Pathol47167177CrossRefGoogle Scholar
  26. 26.
    St Leger, RJ, Cooper, RM, Charnley, AK 1986bCuticle-degrading enzymes of entomopathogenic fungi: mechanism of interaction between pathogen enzymes and insect cuticleJ Inv Pathol47295302CrossRefGoogle Scholar
  27. 27.
    St. Leger, RJ, Cooper, RM, Charnley, AK 1986cCuticle-degrading enzymes of entomopathogenic fungi: synthesis in culture cuticleJ Inv Pathol488595CrossRefGoogle Scholar
  28. 28.
    St Leger, RJ, Cooper, RM, Charnley, AK 1987Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliaeArch Biochem Biophys253221232CrossRefPubMedGoogle Scholar
  29. 29.
    St. Leger, RJ, Allee, LL, May, B, Staples, RC, Roberts, DW 1992World-wide distribution of genetic variation among isolates of Beauveria sppMycol Res9610071015Google Scholar
  30. 30.
    St Leger, RJ 1995The role of cuticle-degrading proteases in fungal pathogenesis of insectsCan J Bot73S1119S1125Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Roberta Alvares Campos
    • 1
  • Walquíria Arruda
    • 2
  • Juliano Tomazzoni Boldo
    • 1
  • Márcia Vanusa da Silva
    • 2
  • Neiva Monteiro de Barros
    • 1
  • João Lúcio de Azevedo
    • 1
  • Augusto Schrank
    • 2
  • Marilene Henning Vainstein
    • 2
  1. 1.Instituto de BiotecnologiaUniversidade de Caxias do Sul, Caxias do SulBrazil
  2. 2.Centro de BiotecnologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations